DNA BARCODES OF CLOSELY RELATED (BUT MORPHOLOGICALLY AND ECOLOGICALLY
DISTINCT) SPECIES OF SKIPPER BUTTERFLIES (HESPERIIDAE) CAN DIFFER
BY ONLY ONE TO THREE NUCLEOTIDES

JOHN M. BURNS
Department of Entomology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 127, room E-515,
Washington, DC 20013-7012, USA, email: burnsj@si.edu

DANIEL H. JANZEN
Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA, email: djanzenvsas.upenn.edu

MEHRDAD HAJIBABAEI
Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1, email: mhajibab@uoguelph.ca

WINNIE HALLWACHS
Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA, email: whallwac@sas.upenn.edu

AND

PAUL D. N. HEBERT
Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1, email: phebert@uoguelph.ca

ABSTRACT. Unlike most species of Lepidoptera whose DNA barcodes have been examined, closely related taxa in each of three pairs of
hesperiids (Polyctor cleta and P. polyctor, Cobalus virbius and C. fidicula, Neoxeniades buda and N. pluviasilva Burns, new species) seem in-
distinguishable by their barcodes; but that is when some of the cytochrome c oxidase I (COI) sequences are short and sample sizes are small.
These skipper butterflies are unquestionably distinct species, as evidenced by genitalic and facies differences and by ecologic segregation, i.e.,
one species of each pair in dry forest, the other in adjacent rain forest in Área de Conservación Guanacaste in northwestern Costa Rica. This
national park is the source of the specimens used in this study, all of which were reared. Larval foodplants are of no or problematic value in dis-
tinguishing these species. Large samples of individuals whose barcodes are acceptably long reveal slight interspecific differentiation (involving
just one to three nucleotides) in all three pairs of skippers. Clearly, the chronic practice of various taxonomists of setting arbitrary levels of dif-
ferentiation for delimiting species is unrealistic.

Additional key words: Área de Conservación Guanacaste, Costa Rica, dry forest, rain forest, foodplants, genitalia, Neoxeniades pluviasilva
Burns, n. sp.

A DNA barcode is the base pair (bp) sequence of a short (~650 bp), standard segment of the genome (Hebert et al. 2003). In animals, this is part of the
mitochondrial gene cytochrome c oxidase I (COI). Because the COI gene generally mutates at evolutionarily rapid rates, comparison of barcodes in a
sample of individuals best reveals differentiation at low taxonomic levels. Hence barcodes can be extremely useful in distinguishing and identifying species.
Coupling this concept with the idea of always comparing the same short length of COI across a wide diversity of taxonomic groups—and doing so with
demonstrable success—is what led to the catchy name “DNA barcodes” (Hebert et al. 2003). Even though COI had been used effectively in various evolutionary
and taxonomic studies at and around the species level well before this epithet appeared, in the few years since its introduction, barcodes have been used for their
specific purpose with notable results and with rapidly increasing frequency.

The rearing of myriad wild-caught caterpillars in Área de Conservación Guanacaste (ACG) in northwestern Costa Rica is now approaching its thirtieth year (for
information about both site and rearing process, see Miller et al. 2006, Janzen & Hallwachs 2006, Burns & Janzen 2001). DNA barcodes (of a total of 4,260 reared
adults) have been able to distinguish among almost 98% of 521 previously known species of the lepidopteran families Hesperiidae (skipper butterflies), Sphingidae
(sphinx moths), and Saturniidae (wild silk moths)
Rare cases where barcodes failed, which always involved closely related congeners, are worth examining in more detail. In this paper we treat three such pairs of congeneric skipper species (noted in Hajibabaei et al. 2006:table 1). We map the ecologic separation of the species in each pair in and very near ACG. We document the species status of each member of a pair (and describe one as new) on morphologic grounds. We discuss the various degrees to which larval diets, although specialized, are unreliable for species discrimination. And we show, by scrutinizing sequence length and composition, that DNA barcodes separate the species after all. Despite the immense value of DNA barcodes and the fact that they have often indicated overlooked species, it is important to consider characters besides the barcodes themselves—a point made repeatedly in the revelation of 10 cryptic species hiding under the one name Astraptes fulgerator (Walch) in ACG (Hebert et al. 2004).

The Species Pairs in Question

Ecologic separation (Figs. 1-3). Each pair comprises a dry-forest species and a rainforest species. Parapatry of this kind is a recurrent distribution pattern among closely related lepidopteran species in ACG. In each pair of the following list, the dry-forest species comes first: Polyctor cleta Evans and P. polyctor (Prittwitz), Cobalus virbius (Cramer) and C. falcida (Hewitson), Neoxeniades luda (Hewitson) and N. pluviasilva Burns (a new species described below). Polyctor is a pyrgine genus, and Cobalus and Neoxeniades are hesperiine genera.

From our distribution data, parapatry in both pairs of hesperiine species appears to be complete (Figs. 2, 3) whereas that in the pyrgine pair does not (Fig. 1). Out of 211 reared individuals (wild-caught as caterpillars) of the rainforest species P. polyctor, four came from dry forest. The genitalia of these apparent strays have been KOH-dissected and thoroughly studied to be sure of

![Fig. 1. Spatial distribution of Polyctor cleta and P. polyctor in and near ACG.](image-url)
their specific determination. Because both species of this essentially parapatric pair of Polyctor eat the same three species of foodplants (Table 3), and because one of these plants occurs in both rain and dry forest, a female wandering from rain forest can find an attractive foodplant in dry forest and oviposit on it. The flight of these skippers is far stronger than necessary to travel the distance involved. Of the four P. polyctor caterpillars found in dry forest, three were eating the species of foodplant most often eaten by this skipper in rain forest (and because two of those were found on the very same plant, they are probably offspring of a single female); the fourth caterpillar was eating an exceedingly common, but strictly dry-forest, species that is by far the preferred foodplant of P. cleta.

A small number of P. cleta caterpillars found in disturbed ecotone between dry and rain forest, and less than 2 km from the latter, were eating the main foodplant of P. polycytor. KOH-dissection and examination of the genitalia of the four adults reared from this group gave no hint of hybridization.

Morphologic differences (Figs. 4-41; Tables 1, 2). In all three pairs, the brown ground color of the adult averages paler in the dry-forest species than it does in its rainforest counterpart (Figs. 4–27). This is especially evident when comparing long series of more or less recently reared (therefore unfaded) specimens.

In both sexes of Polyctor, a spot spanning the distal end of the forewing cell is hyaline in P. cleta but opaque in P. polycytor. A male secondary sex character in these species of Polyctor comprises a tuft of long hairlike scales arising near the base of the dorsal hindwing costa, as well as an elongate patch of pale specialized scales embraced by the swollen beginning of vein 7 and a similarly swollen, closely adjacent length of vein 6; in both veins, swelling extends out to the end of the cell; and the hairlike scales are long enough to overlie the special patch. These presumably pheromone-disseminating hairs are mostly to entirely dark in P. cleta but pale (often orangish) in P. polycytor (cf. Figs. 4 and 6).

Fig. 2. Spatial distribution of Cobalus virbius and C. fidicula in and near ACG.
Though clearly variations on a theme, the male genitalia of these two Polyctor species differ in striking ways. Despite substantial individual variation, almost every genitalic part differs interspecifically to at least some extent; but it is the highly asymmetric valvae that differ most (see Table 1 and cf. Figs. 28–33). Even the less elaborate female genitalia are notably distinct in the two species (Table 2).

Both species of Cobalus, which are predominantly brown, have a conspicuous white patch both dorsally and ventrally on a distal area of the hindwing. In ACG specimens, this patch is restricted to males of C. fidicula but expressed by both sexes of C. virbius (Figs. 8–11, 20–23), except for two females in which it is barely perceptible. Both species express it more fully ventrally than dorsally. In C. fidicula the patch stops before the outer margin so as to leave a narrow strip of dark brown ground color, ventrally the patch extends from mid space 1c to vein 6, and the white of the patch looks creamy on the ventral surface. In C. virbius the patch reaches the outer margin, ventrally extends from the tornus to vein 6, and looks pure white on both wing surfaces. Lateral orange scaling—broad on the outer side of the palpus and narrow behind the eye—is bright in C. fidicula but just dully suggested, and only on the palpus, in C. virbius. Cobalus fidicula is a little larger than C. virbius, and its forewing hyaline spots are likewise larger.

The male genitalia (which are symmetric) differ in two obvious respects. The ventral distal division of the valva is longer and dorsally dentate in C. fidicula (cf. Figs. 35 and 37). The very broad uncus in dorsal view shows a pair of prominent lateral swellings in C. virbius (cf. Figs. 34 and 36).

Neoxeniades pluviasilva Burns, new species
(Figs. 3, 14, 15, 26, 27, 40, 41, 45, 46; Table 3)

Etymology. The species name, a noun in apposition, comes from the Latin *pluvia* for rain and *silva* for forest.

Diagnosis. This is a rainforest species whereas...
Polyctor polyctor

Not expanded; teeth lower at anterior, more dorsal; coarser.

Very large; evenly curved dorsad, bent sharply dorsad.

More delicate; sexual dimorphisms in another (cf. Figs. 15, 27 with Figs. 14, 26) [no such pronounced sexual dimorphism: much larger in female than in male, with spots overlapping one another (cf. Figs. 15, 27 with 14, 26) to all but nonexistent in female (Fig. 27) [patch always obvious in ventral side of the hindwing nearly as well (cf. Figs. 26, 25) to all but nonexistent in female (Fig. 27) (no such pronounced overlap at genus level)].

Hayward of Rio de Janeiro and Petrópolis, Brazil.

N. scipio

Glance, N. luda is a species of the dry forest (Fig. 3). At a glance, N. luda is darker than N. luda and does not express a large, pale, outer marginal area on the ventral side of the hindwing nearly as well as female from Honduras (Mabille's (1891) original description of one female from Honduras introduced) of Bromeliaceae (Table 3) [no known skipper at least eight species in five genera (one introduced) of Bromeliaceae (Table 3) (Redburn et al. 2009)].

Foodplants: Larval foodplants of this rainforest skipper at least eight species in five genera (one introduced) of Bromeliaceae (Table 3) [no known overlap in foodplant use at species level with dry-forest, sister species N. luda; but one overlap at genus level).

Larval foodplants (Table 3). Foodplants do not distinguish sister species of the pyrgine genus Polyctor: both of these skippers eat one and the same plant species in each of three genera (Allenanthus, Coutarea, and Exostema) of the family Rubiaceae. Nevertheless, P. cleta and P. polyctor use these plants at very different frequencies. Although this may reflect different preferences of the skippers, it more likely stems from the different ecologic distributions of the foodplants: Coutarea hexandra occurs at low frequency in both rain and dry forest, A. erythrocarpus is a rainforest plant

Table 2. Major differences between male genitalia of Polyctor cleta and P. polyctor.

<table>
<thead>
<tr>
<th>Sclerotized terginal area</th>
<th>Polyctor cleta</th>
<th>Polyctor polyctor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smaller</td>
<td>Larger</td>
<td></td>
</tr>
</tbody>
</table>

Overall asymmetry: Not extreme; Pronounced

Sclerotized flap on right side of sterniger: Absent or small; Very large

Sclerotized ostium bursae: Conspicuously projecting (tubelike) from surface of sterniger; Relatively flush with surface of sterniger

Type species: Holotype: male (Figs. 14, 26, 45, 46 [see arrow]), voucher code 06-SRNP-31674 (Janzen & Hallwachs 2006), Sendero Memos, Sector Pitilla, Area de Conservación Guanacaste, Costa Rica, 740 m, latitude 10.98171, longitude -85.42755. Deposition: National Museum of Natural History, Smithsonian Institution (USNM). Labelled (yellow): LEGS AWAY/FOR DNA. DNA barcode (658 bp) of holotype (coded MHH575-06/06-SRNP-31674 Neoxeniades pluviasilva):

AATATTACTTACTGACCGAAATCTTAATACTTCTTTTTTCGACC

TTACTTTTACTCTTATCTCTACCAGTCTTAGCTGGAGCTATTAC

TTGATCAAATATCTTTATTCGTGTGATCTGTTGGTATTACTGCT

AATTTTATTACCACAATTATTAATATGCGAATTAAAAATTTATCTT

TCTCACTCCATCTAGCTGGAATTTCATCTATTTTAGGAGCTATT

TTGATCAAATATCTTTATTCGTGTGATCTGTTGGTATTACTGCT

ATACTTTACTTCTCTATCCTGCTATCTGATTACCTGCTATCT

ATATATTACTTACTGCTAGCAGAACCCAAATCTAATCTCTTCTTTGAC

CAGCAAGGAGAGAGAGATCTCTTATTTATTTCAAGAATTGTAGA

GAGATATAGCTTTCCCTCGATTAAATAATATAAGATTTTGATTA

TGGAGGATTTGGAAATTGATTAGTACCTTTAATATTAGGAGCT

CTCATGCATTTATTATAATTTTTTTTATAGTTATACCTATTATAAT

GATTTTTAATTGGAAATGATCAAATTTACAATACTATTGTTACAG

AACTTCATTAAGTTATTTATCTAGCTGGAATTTCATCTATTTTAGGAGCTATT

AAATGGAGCTGGCACTGGATGAACTGTTTATCCCCCTCTTTC

TTACCTCCTTCTTTAATACTTTTAATTTCAAGAATTGTAGA

CCAGATATAGCTTTCCCTCGATTAAATAATATAAGATTTTGATTA

TGGAGGATTTGGAAATTGATTAGTACCTTTAATATTAGGAGCT

CTCATGCATTTATTATAATTTTTTTTATAGTTATACCTATTATAAT

GATTTTTAATTGGAAATGATCAAATTTACAATACTATTGTTACAG

AACTTCATTAAGTTATTTATCTAGCTGGAATTTCATCTATTTTAGGAGCTATT

AAATGGAGCTGGCACTGGATGAACTGTTTATCCCCCTCTTTC

TTACCTCCTTCTTTAATACTTTTAATTTCAAGAATTGTAGA

CCAGATATAGCTTTCCCTCGATTAAATAATATAAGATTTTGATTA

TGGAGGATTTGGAAATTGATTAGTACCTTTAATATTAGGAGCT

CTCATGCATTTATTATAATTTTTTTTATAGTTATACCTATTATAAT

GATTTTTAATTGGAAATGATCAAATTTACAATACTATTGTTACAG

AACTTCATTAAGTTATTTATCTAGCTGGAATTTCATCTATTTTAGGAGCTATT

AAATGGAGCTGGCACTGGATGAACTGTTTATCCCCCTCTTTC
Conversely, foodplants do seem to distinguish the species of the species pairs in the hesperiine genera Cobalus and Neoxeniades. In each pair, the rainforest skipper feeds on more species than its dry-forest counterpart. Cobalus virbius eats two plant species in two genera, and C. fidiula eight plant species in five genera, of the family Arecaceae (palms). Neoxeniades luda eats three plant species in two genera, and N. pluviasilva eight plant species in five genera, of the family Bromeliaceae (bromeliads). The species in each skipper pair share no foodplant species and just one genus. However, these considerable differences in diet may have little taxonomic significance. Palms and bromeliads are far more diverse in rain forest than they are in dry forest, so that the rainforest skippers have a wider choice. Were either species of a pair to invade the other’s ecosystem, it might well find its relative’s foodplants acceptable. This conjecture is somewhat weakened by the fact that the rainforest skippers, though polyphagous, still restrict their diet to fewer species of palms and bromeliads than are available to them; and even one dry-forest species is somewhat choosy. To illustrate, the ACG dry forest provides only two species of palms for C. virbius, both of which it eats, whereas the rain forest offers >10 species of palms beyond the eight so far recorded for C. fidiula. The dry-forest skipper N. luda eats the three terrestrial bromeliad species, but not the epiphytic ones, available to it, whereas N. pluviasilva eats both kinds of bromeliads, but seems nevertheless to ignore many of the epiphytic species at hand.

DNA barcodes (Figs. 42–46). For our barcoding methods, see Hajibabaei et al. (2006:971). We determined sequence divergences among individuals in each species pair (as well as in a related outgroup species) by means of the Kimura-2-Parameter (K2P) distance model (Kimura 1980), and then showed these divergences in neighbor-joining (NJ) trees (Saitou & Nei 1987). A paper in preparation will deposit in GenBank all of the sequences used here (along with thousands more for hundreds of species in various lepidopteran families, including Hesperiidae). All voucher specimens have been deposited in the National Museum of Natural History, Smithsonian Institution.

Since we could not discriminate between the species in each pair during our early barcoding efforts, we greatly increased sample sizes; but we still included some COI sequences that were too short to qualify as legitimate barcodes. Two of the resulting NJ trees

Table 3. Larval foodplants of two species of Polyctor, Cobalus, and Neoxeniades in Area de Conservación Guanacaste, northwestern Costa Rica; the number of rearing records for each plant species is given (source, Janzen & Hallwachs 2006).

<table>
<thead>
<tr>
<th>Polyctor cleta</th>
<th>Rubiaceae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allenanthus erythrocarpus</td>
<td>9</td>
</tr>
<tr>
<td>Coutarea hexandra</td>
<td>7</td>
</tr>
<tr>
<td>Exostema caribaeum</td>
<td>1</td>
</tr>
<tr>
<td>Exostema mexicanum</td>
<td>124</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polyctor polyctor</th>
<th>Rubiaceae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allenanthus erythrocarpus</td>
<td>44</td>
</tr>
<tr>
<td>Coutarea hexandra</td>
<td>166</td>
</tr>
<tr>
<td>Exostema mexicanum</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cobalus virbius</th>
<th>Arecaceae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrocomia aculeata</td>
<td>7</td>
</tr>
<tr>
<td>Bactris guineensis</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cobalus fidiula</th>
<th>Arecaceae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrocaryum alatum</td>
<td>25</td>
</tr>
<tr>
<td>Bactris gasipaes (introduced)</td>
<td>5</td>
</tr>
<tr>
<td>Bactris gracilior</td>
<td>6</td>
</tr>
<tr>
<td>Bactris hondurensis</td>
<td>10</td>
</tr>
<tr>
<td>Chamaedorea dammeriana</td>
<td>1</td>
</tr>
<tr>
<td>Chamaedorea pinnatifrons</td>
<td>1</td>
</tr>
<tr>
<td>Cryosophila warscewiczii</td>
<td>1</td>
</tr>
<tr>
<td>Prestoea decurrens</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neoxeniades luda</th>
<th>Bromeliaceae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aechmea bracteata</td>
<td>4</td>
</tr>
<tr>
<td>Aechmea magdalenae</td>
<td>30</td>
</tr>
<tr>
<td>Bromelia pingui</td>
<td>138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neoxeniades pluviasilva</th>
<th>Bromeliaceae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aechmea pubescens</td>
<td>12</td>
</tr>
<tr>
<td>Ananas conosus (introduced)</td>
<td>3</td>
</tr>
<tr>
<td>Gazania desantelii</td>
<td>3</td>
</tr>
<tr>
<td>Gazania inermis</td>
<td>12</td>
</tr>
<tr>
<td>Gazania nicaraguensis</td>
<td>1</td>
</tr>
<tr>
<td>Pitcairnia arcuata</td>
<td>1</td>
</tr>
<tr>
<td>Pitcairnia atrorubens</td>
<td>4</td>
</tr>
<tr>
<td>Vriesea gladisflora</td>
<td>19</td>
</tr>
</tbody>
</table>
FIGS. 4–15. Reared adults in dorsal view of Polyctor, Cobalus, and Neoxeniades from ACG, Costa Rica (specimens in USNM). Males even-numbered, females odd-numbered. Wingspan and voucher code given for each specimen. 4, 5, *P. cleta*: 32 mm, 02-SRNP-32285; 40 mm, 06-SRNP-869. 6, 7, *P. polyctor*: 35 mm, 05-SRNP-42248; 34 mm, 03-SRNP-38341. 8, 9, *C. virbius*: 32 mm, 92-SRNP-6215.1; 32 mm, 92-SRNP-46. 10, 11, *C. fidelica*: 39 mm, 05-SRNP-23068; 36 mm, 04-SRNP-32408. 12, 13, *N. luda*: 49 mm, 01-SRNP-11651; 53 mm, 03-SRNP-38341. 14, 15, *N. phuviasilva*: 43 mm, 06-SRNP-31674; 52 mm, 05-SRNP-22927.

nearly separated the two species of *Polyctor* (Fig. 42) and those of *Cobalus* (Fig. 44). However, the third tree appreciably intermixed the two species of *Neoxeniades* (Fig. 45). The short sequences lacked diagnostic sites and therefore compromised the NJ analysis. Subsequent exclusion of short sequences resulted in clear species separation (Figs. 43, 46).

Close examination of the barcode nucleotides showed that the two species of *Polyctor* consistently differ at three nucleotide positions (610, 616, and 625), and the two species of *Neoxeniades*, at one (115). Similarly, the two species of *Cobalus* differ in one nucleotide (at position 181), except for two females of *C. virbius* (04-SRNP-21798 and 06-SRNP-22664) whose “diagnostic” nucleotide is the same as that of the *C. fidicula* specimens. The two females of *C. virbius* whose barcodes match those of *C. fidicula* are not the two females of *C. virbius* (noted above, under “Morphologic differences” [with voucher codes 92-SRNP-340 and 06-SRNP-13344]) whose hindwing facies approaches that of *C. fidicula* females. Because, in each pair of skipper species, the interspecific nucleotide differences are very few (compared with many species of skippers previously examined), full-length, high-quality barcode sequences (~650 bp) are critical for distinguishing the species in each pair. Of course, characters of this kind—like many others—may vary geographically.

The levels at which these species are distinguished is so low that, in many other circumstances, their differences could easily qualify as nothing more than individual variation. It follows that the designation of some percentage or degree of divergence as a point
FIGS. 30, 31. Asymmetric male genitalia in right lateral view of two species of Polyctor from ACG, Costa Rica (USNM), scale = 1.0 mm. 30, *P. cleta*, X-6165, 03-SRNP-30880. 31, *P. polyctor*, X-6159, 02-SRNP-7128.

FIGS. 32, 33. Asymmetric male genitalia in dorsal view of two species of Polyctor from ACG, Costa Rica (USNM), scale = 1.0 mm. 32, *P. cleta*, X-6165, 03-SRNP-30880. 33, *P. polyctor*, X-6159, 02-SRNP-7128.
Figs. 34–37. Male genitalia of two species of Cobalus from ACG, Costa Rica (USNM), scale = 1.0 mm. 34, 35, C. virbius, X-5873, 99-SRNP-6213. 36, 37, C. fidicula, X-5876, 99-SRNP-5903. 34, 36, Tegumen, uncus, and gnathos in dorsal view. 35, 37, Complete genitalia in left lateral view.
FIGS. 42, 43. Neighbor-joining (NJ) trees based on Kimura-2-Parameter (K2P) distances for cytochrome c oxidase I (COI) of *Polyctor* from ACG, Costa Rica. Outgroup, *P. enops*. Rearing voucher code and sequence length given for each individual. To find the larval foodplant of any individual, enter its voucher code in the ACG database (Janzen & Hallwachs 2006). 42, 19 *P. cleta* and 44 *P. polyctor* with various COI sequence lengths. 43, 17 *P. cleta* and 35 *P. polyctor* with COI barcodes of sufficient lengths (approaching or exceeding 650 base pairs) for distinguishing these species.
Fig. 44. NJ tree based on K2P distances for COI of 8 Cobalus virbius and 39 C. fidicula from ACG, Costa Rica. Outgroup, Aides brino. Rearing voucher code and sequence length given for each individual.
below which individuals should be considered conspecific is unrealistic (even though many taxonomists have done so, in various contexts, for a great many years). Speciation is not tidy.

ACKNOWLEDGEMENTS

We thank Waldy Medina for making distribution maps, Donald Harvey for dissecting genitalia, Young Sohn for drawing some of them, Karie Darrow for reducing and numbering the drawings, the ACG parataxonomists (see Burns & Janzen 2005a, 2005b, Miller et al. 2006) for finding and rearing caterpillars, Tanya Dapkey for plucking and shipping legs from reared adults for DNA analysis (i.e., “LEGS AWAY/FOR DNA”), Stephanie Kirk and Rebecca Gowling for molecular work, Janet Topan and Angela Holliss for DNA sequence analysis, and John Shuey and Felix Sperling for helpful comments. Support for this study came from the National Museum of Natural History Small Grants Program (J. M. B.); National Science Foundation grants BSR 9024770 and DEB 9306296, 9400829, 9705072, 0072730, and 0515699 (D. H. J.); and Genome Canada through the Ontario Genomics Institute, and the Gordon and Betty Moore Foundation (P. D. N. H.).

FIGS. 45, 46. NJ trees based on K2P distances for COI of Neoxeniades from ACG, Costa Rica. Outgroup, N. BURNS04 (an undescribed species). Rearing voucher code and sequence length given for each individual. Arrow indicates holotype. 45, 13 N. luda and 24 N. pluviasilva with various COI sequence lengths. 46, 7 N. luda and 12 N. pluviasilva with COI barcodes of sufficient lengths for distinguishing these species.
LITERATURE CITED

Received for publication 27 March; revised and accepted 25 May 2007.