Molecular analysis of Southern Ocean skates (*Bathyraja*) reveals a new species of Antarctic skate

**P. J. Smith**†, **D. Steinke**‡, **S. M. Mcveagh***, **A. L. Stewart**§, **C. D. Struthers**§ and **C. D. Roberts**§

*National Institute of Water & Atmospheric Research Ltd, Private Bag 14 901, Wellington, New Zealand, ‡Canadian Centre for DNA Barcoding, Biodiversity Institute of Ontario, University of Guelph, 579 Gordon Street, Guelph, Ontario N1G 2W1 Canada and §Museum of New Zealand Te Papa Tongarewa, P. O. Box 467, Wellington, New Zealand*

(Received 5 November 2007, Accepted 1 May 2008)

Two regions of mtDNA, cytochrome *b* and cytochrome *c* oxidase subunit 1, were sequenced in nine species of *Bathyraja* from the Southern Ocean and New Zealand. Based on sequence divergence, the species that has been referred to as *Bathyraja eatonii* from the Antarctic continental shelf and slope is a species distinct from *B. eatonii* from the Kerguelen Plateau (the type locality) and is a new and undescribed species *Bathyraja* sp. (*cf. eatonii*). There was no sequence divergence among samples of *Bathyraja* sp. (dwarf) from the Ross Sea and the South Atlantic. However, for both *Bathyraja* sp. (*cf. eatonii*) and *Bathyraja maccaini* in the Ross Sea and the South Atlantic Ocean, the DNA sequence divergences indicate differentiation among ocean basins and within *Bathyraja* sp. (*cf. eatonii*) divergences are similar to those among recognized species of *Bathyraja* in the North Pacific Ocean.

Key words: cytochrome *b*; cytochrome *c* oxidase 1; marine fish; mtDNA.

**INTRODUCTION**

In Antarctic waters, skates (Rajiidae) are the dominant component of the chondrichthyan fauna (Long, 1994) but have not been well described in part because of the limited number of specimens available for scientific study, making identification difficult for fisheries observers and taxonomists alike (Stehmann & Bürkel, 1990). The development of the toothfish (*Dissostichus eleginoides* Smitt and *Dissostichus mawsoni* Norman) fisheries, and subsequent observer collecting programmes, has provided more skate specimens, leading to better descriptions of the Antarctic chondrichthyan fauna. For example, an unknown species of
Amblyraja, previously classified as the starry skate Amblyraja georgiana (Norman), was recently recognized (but not formally named) from the toothfish (D. eleginoides) fishery around South Georgia (Endicott et al., 2002).

Six species of Bathyraya have been described from Antarctic and sub-Antarctic waters where they represent the dominant rajid group (Stehmann & Bürkel, 1990), Bathyraya eatonii (Günther); Bathyraya maccaini Springer; Bathyraya meridionalis Stehmann, 1987; Bathyraya murrayi (Günther); Bathyraya irrasa Hureau & Ozouf-Costaz and Bathyraya n. sp., referred to hereafter as Bathyraya sp. (dwarf) of Stehmann & Bürkel (1990: 88). Three of these species appear to have restricted distributions, B. murrayi around the Kerguelen and Herd Islands, B. irrasa on the Kerguelen Plateau and B. meridionalis in the South Atlantic Ocean, while the other three appear to be widely distributed, B. eatonii on the Kerguelen Plateau (type locality) and in the South Atlantic Ocean and Ross Sea, B. maccaini in the South Atlantic and Pacific Oceans and Bathyraya sp. (dwarf) in the Atlantic Ocean and Ross Sea. For the three widely distributed species, the intraspecific relationships among regional populations are unknown.

A dominant feature in the Southern Ocean is the Antarctic Circumpolar Current (ACC), which forms a physical barrier to the northward dispersal of Antarctic species and acts as a west-east transport system (Eastman, 1993; DeVries & Steffensen, 2005). Much of the Southern Ocean lies between 3000 and 5000 m in depth with isolated plateaus, ridges, banks and islands; the continental shelf area is relatively narrow except for the large embayments in the Ross and the Weddell Seas, which are characterized by clockwise gyres. The physical heterogeneity, when considered with the age of the bathyal habitats, may have promoted evolutionary processes in this unique environment (Moller et al., 2005). Habitat fragmentation can restrict dispersal among populations, limit gene flow and lead to allopatric speciation (Avise, 2000). Skates are absent from deep ocean basins (Long, 1994, and species of Bathyraya may consist of one genetic population with gene flow via the ACC or isolated populations contained within gyres in the Ross and the Weddell Seas and to the east of the Kerguelen Plateau (Orsi et al., 1995).

Molecular techniques are increasingly being used to resolve taxonomic-population relationships in fishes. Studies employing DNA markers have reported restricted gene flow in some Antarctic fishes (Smith & Gaffney, 2000, 2005; Smith & McVeagh, 2000; Appleyard et al., 2002; Parker et al., 2002; Zane et al., 2006) and even cryptic species in the squid Martalina hyadesi Rochebrune & Mabille (Brierley et al., 1993). There have been few molecular phylogenetic studies of skates and rays in general (Rasmussen & Arnasson, 1999; Sezaki et al., 1999; Valsecchi et al., 2005). A recent study of cytochrome c oxidase subunit I (COI) variability among North Pacific Bathyraya found shallow divergences (average 0.036) among 10 of 12 species (Spies et al., 2006). The COI marker has also been used to identify juvenile skates in the North Atlantic Ocean (Alvarado Bremer et al., 2005), while partial sequences of part of cytochrome b (Cyt b) have been used in population studies of North Atlantic skates (Chevolot et al., 2006; Chevolot et al., 2007). Here, two regions of mtDNA (COI and Cyt b) are used to determine relationships among Antarctic Bathyraya and to provide evidence for a new species.
MATERIALS AND METHODS

TISSUE COLLECTION

Muscle tissue samples were taken from frozen Antarctic skate specimens (Fig. 1), which were preserved and registered in the National Fish Collection (NFC) at the Museum of New Zealand Te Papa Tongarewa: B. maccaini from the Ross Sea and the South Atlantic Ocean; Bathyraja sp. (dwarf) from the Ross Sea and South Atlantic Ocean; B. eatonii from the Ross Sea and South Atlantic Ocean, and hereafter referred to as Bathyraja sp. (cf. eatonii); and B. meridionalis from the South Atlantic Ocean (Fig. 1 and Table I). Tissue samples from the underside of the right fin were taken from freshly thawed specimens prior to specimen fixation in formalin, stored in 90% ethanol and cross-referenced to the unique registration number of the whole specimen in the NFC. Muscle tissue samples were collected by fishery observers at sea from B. murrayi, B. irrasa and B. eatonii [distinguished from Bathyraja sp. (cf. eatonii) below] on the Kerguelen Plateau and B. maccaini and Bathyraja sp. (cf. eatonii) in the Cooperation Sea (Table I) and stored frozen at −20°C. Additional tissue samples from Bathyraja caught in the New Zealand Exclusive Economic Zone (EEZ) were selected for DNA analyses.

Fig. 1. Capture locations of Antarctic skates. Bathyraja eatonii ◆; Bathyraja sp. (cf. eatonii) ▼; Bathyracija maccaini ◆; Bathyraja meridionalis ▲; Bathyraja n. sp. (dwarf) ■; Bathyraja irrasa and Bathyraja murrayi were taken around the Kerguelen Islands. Bathyraja shuntovi, Bathyraja richardsoni and Bathyraja sp. (blond) were taken around southern New Zealand. Inset: Ross Sea capture locations.
Table I. Summary data on Southern Ocean *Bathyraja* spp. used for DNA analyses

<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
<th>Size range $L_T$ (mm)</th>
<th>N sequenced</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Bathyraja</em> sp. (cf. eatonii)</td>
<td>Ross Sea</td>
<td>561–1129</td>
<td>10</td>
</tr>
<tr>
<td><em>Bathyraja</em> sp. (cf. eatonii)</td>
<td>Atlantic</td>
<td>245–637</td>
<td>7</td>
</tr>
<tr>
<td><em>Bathyraja</em> sp. (cf. eatonii)</td>
<td>Cooperation Sea</td>
<td>737</td>
<td>1</td>
</tr>
<tr>
<td><em>B. eatonii</em></td>
<td>Kerguelen (L)</td>
<td>782–871*</td>
<td>5</td>
</tr>
<tr>
<td><em>B. irrasa</em></td>
<td>Kerguelen (L)</td>
<td>1010–1420</td>
<td>3</td>
</tr>
<tr>
<td><em>B. murrayi</em></td>
<td>Kerguelen (L)</td>
<td>364–453</td>
<td>4</td>
</tr>
<tr>
<td><em>B. maccaini</em></td>
<td>Ross Sea</td>
<td>463–882</td>
<td>10</td>
</tr>
<tr>
<td><em>B. maccaini</em></td>
<td>Cooperation Sea</td>
<td>502–710</td>
<td>5</td>
</tr>
<tr>
<td><em>B. maccaini</em></td>
<td>South Atlantic (L)</td>
<td>282–586</td>
<td>3</td>
</tr>
<tr>
<td><em>B. meridionalis</em></td>
<td>South Atlantic (L)</td>
<td>629–1410</td>
<td>7</td>
</tr>
<tr>
<td><em>Bathyraja</em> sp. (dwarf)</td>
<td>Ross Sea</td>
<td>449–564</td>
<td>10</td>
</tr>
<tr>
<td><em>Bathyraja</em> sp. (dwarf)</td>
<td>South Atlantic</td>
<td>494–548</td>
<td>6</td>
</tr>
<tr>
<td><em>Bathyraja</em> sp. (blond)</td>
<td>NZ EEZ</td>
<td>1040–1070</td>
<td>2</td>
</tr>
<tr>
<td><em>B. richardsoni</em></td>
<td>NZ EEZ</td>
<td>1567</td>
<td>1</td>
</tr>
<tr>
<td><em>B. shuntovi</em></td>
<td>NZ EEZ</td>
<td>912–1087</td>
<td>2</td>
</tr>
</tbody>
</table>

$L_T$, total length; L, type locality of species; NZ EEZ, New Zealand exclusive economic zone.

*Not all specimens measured.

(Table I) to provide further estimates of sequence divergence among southern hemisphere *Bathyraja* spp.: *Bathyraja shuntovi* Dolganov, 1985, from the type locality Lord Howe Rise; *Bathyraja richardsoni* (Garrick), from the type locality Cook Strait and *Bathyraja* sp. (blond) from the east Campbell Plateau.

**DNA ANALYSES**

Total genomic DNA was extracted from small pieces (200–500 mg) of white muscle following standard techniques. Two regions of the mitochondrial genome were amplified using the polymerase chain reaction (PCR) in 50 μl volumes in a Cetus 9600 DNA thermo-cycler (Perkin-Elmer Corporation, Waltham, MA, U.S.A.). The primer pair Cyb 2 and tGludg (Palumbi *et al.*, 1991), which amplify c. 400 base pair region of the Cyt b gene in fishes (Baker *et al.*, 1995) and the *Raja*-specific COI primers COI_RajaF and COI_RajaR (Spies *et al.*, 2006) were used with all samples. Both the Cyt $b$ and the COI regions of mtDNA have been used as markers to identify and distinguish intra-generic skate species: Cyt $b$ for *Leucoraja* spp. (Alvarado Bremer *et al.*, 2005) and COI for *Bathyraja* spp. and *Raja* spp. (Spies *et al.*, 2006). In this latter example, 10 of 12 North Pacific *Bathyraja* spp. had unique COI sequences.

Amplifications for Cyt $b$ were carried out using an initial denaturation of 94°C for 2 min; 34 cycles of 92°C for 60 s, 54°C for 60 s and 72°C for 90 s, followed by an extension at 72°C for 8 min. Amplifications for COI were carried out using an initial denaturation of 94°C for 1 min; 35 cycles of 94°C for 60 s, 57°C for 90 s and 72°C for 60 s, followed by an extension at 72°C for 5 min. PCR products were purified using the QIAquick gel extraction kit (Qiagen, Valencia, CA, U.S.A.). Sequences were determined using the ABI Taq DyeDeoxy™ Terminator Cycle Sequencing kit according to the manufacturer’s directions (Applied Biosystems Inc., Foster City, CA, U.S.A.) and run on an ABI prism autosequencer.

DNA sequences were edited in CHROMAS (Technelysium, Queensland, Australia), aligned in CLUSTAL in MEGA 3 (Kumar *et al.*, 2004) and stored in BIOEDIT (Hall,
Phylogenetic congruence of the two data sets was tested with a partition homogeneity test (Farris et al., 1994). Five hundred partition replicates were analysed under maximum parsimony using heuristic searches in PAUP 4.0b10 (Swofford, 2003). Phylogenies were explored with neighbour-joining (NJ) and maximum likelihood (ML) methods using MEGA 3.1 and PAUP (Swofford, 2003). MODELTEST 3.7 (Posada & Crandall, 1988) was used to determine the best-fit model using likelihood ratio tests for distance and ML methods, and the HKY+I+G model (Hasegawa et al., 1985) was selected for the pooled Cyt b and COI sequence data set. Support for each internode was evaluated by bootstrap replications (Felsenstein, 1985) with 1000 pseudoreplicates for NJ but not for ML trees because of large computational requirements of ML bootstrap replications. Bayesian phylogenetic trees were estimated with MRBAYES 3.0 (Huelsenbeck & Ronquist, 2001) for the pooled Cyt b–COI sequence data set, using the codon model established above. Four simultaneous Monte Carlo chains were run for $1 \times 10^6$ generations, saving the current tree every 100 generations. A consensus tree with posterior probabilities was created with a burn-in value equal to 5000 (the first 5000 trees were discarded). The consensus phylogram of the remaining trees was viewed in TREEVIEW (Page, 1996). The pooled Cyt b and COI trees were rooted with B. shuntovi. The Cyt b sequences were deposited in GenBank accession numbers (EU070939–071005) and the COI sequences in the Barcode Of Life Database (accession numbers: FNZC001-07 to FNZC072-07).

RESULTS

Unambiguously aligned sequences were obtained for 392 bp of Cyt b sequence from 76 tissue samples of Bathyraja spp. Sixty-three nucleotide sites were variable and 57 were parsimoniously informative in the total data set. Most substitutions occurred in the third nucleotide position within codons (76%). There were 16 amino acid substitutions of which 14 were phylogenetically informative. Unambiguously aligned sequences were obtained for 691 bp of COI sequence from the same 76 tissue samples of Bathyraja spp. Sixty nucleotide sites were variable and 52 were parsimoniously informative in the total data set. The majority of substitutions occurred in the third nucleotide position within codons (96%). There were only four amino acid substitutions of which two were phylogenetically informative (Bathyraja n. sp. amino acid substitution F > L, base positions 172–173 and B. maccaini, B. shuntovi and B. richardsoni amino acid substitution V > M, base positions 4–6).

Partition homogeneity tests did not allow rejection of phylogenetic congruence ($P = 0.064$), justifying the combination of the Cyt b and COI sequence data sets. One hundred and twenty-five nucleotide positions were variable, and 110 were parsimoniously informative in the total 1083 bp data set. All three phylogenetic analyses (NJ, ML and Bayesian) produced trees with similar topologies supported by high bootstrap values (NJ only) and high posterior probabilities (Fig. 2).

Three recognized species, for which specimens were each sampled from one geographic region, B. irrasa (Kerguelen Plateau), B. murrayi (Kerguelen Plateau) and B. meridionalis (South Georgia), appeared as well-supported clades (Fig. 2) with moderate to high relative sequence divergences (Table II). Likewise, the three species sampled in the New Zealand EEZ, B. richardsoni, B. shuntovi and Bathyraja sp. (blond), appeared as well-supported clades (Fig. 2) with moderate to high relative sequence divergences (Table II, sequences for the single tissue sample from B. richardsoni were excluded from Table II).
Excluding *Bathyraja* sp. (*cf. eatonii*), the Cyt b sequence divergences among species ranged from 0.025 to 0.057 and COI from 0.014 to 0.028 (Table II). Specimens of *Bathyraja* sp. (dwarf) from the Ross Sea and the South Atlantic Ocean had a shallow net divergence (Cyt b and COI = 0.002; Table II), as did specimens of *B. maccaini* from the Cooperation Sea, Ross Sea and South Atlantic Ocean (Cyt b = 0.003–0.006; COI = 0.002–0.009; Table II). The tissue sample from one specimen of *B. maccaini* from the Cooperation Sea captured at 61° E clustered with the Atlantic specimens, while tissue samples from four other specimens captured at 72° E formed a discrete cluster (Fig. 2).

There was a relatively moderate divergence among the South Atlantic Ocean and Ross Sea samples of *Bathyraja* sp. (*cf. eatonii*) for Cyt b (0.017) and low COI divergence (0.005; Table II), but a high divergence among *Bathyraja* sp. (*cf. eatonii*) for the South Atlantic Ocean–Ross Sea and *B. eatonii* from the Kerguelen Plateau (Cyt b = 0.050 and 0.057, COI = 0.016 and 0.019; Table II).

Among the *B. eatonii* and *Bathyraja* sp. (*cf. eatonii*) specimens sequenced for Cyt b, 29/392 bases were variable and 25/392 were phylogenetically informative. Among the South Atlantic Ocean and Ross Sea *Bathyraja* sp. (*cf. eatonii*), only 11/392 bases were variable and 9/392 were phylogenetically informative, leading to 5/130 variable amino acids and 4/130 phylogenetically informative amino acids. There were three amino acid substitutions (A > G, base positions 25–27; M > I, base positions 34–36 and V > I, base positions 220–222) among the South Atlantic Ocean and Ross Sea *Bathyraja* sp. (*cf. eatonii*).

Among the *B. eatonii* and *Bathyraja* sp. (*cf. eatonii*) specimens sequenced for COI, 25/691 bases were variable and 15/691 were phylogenetically informative. Among the South Atlantic Ocean and Ross Sea *Bathyraja* sp. (*cf. eatonii*), 20/691 COI bases were variable and 5/691 were phylogenetically informative, leading to 2/230 variable amino acids, but 0/230 phylogenetically informative amino acids. The shallow divergences and lack of fossil specimens precluded a realistic estimate of the time of divergence among the *Bathyraja* spp.

**DISCUSSION**

Skates are unique among the Chondrichthyes and noted for their high species diversity but morphological conservatism (McEachran & Dunn, 1998). Certainly, *Bathyraja* in the Southern Ocean are morphologically similar, and it is possible that the generalist morphologies have been advantageous in the cold and deep benthic environment (Long, 1994). The limited morphological divergence among *Bathyraja* spp. in Antarctic waters has made identification difficult for field workers and taxonomists alike (Stehmann & Bürkel, 1990).
### Table II. Net sequence divergence for mtDNA cytochrome *b* (below diagonal) and COI (above diagonal) among species and, or populations of *Bathyraja* spp.

<table>
<thead>
<tr>
<th></th>
<th>BmC</th>
<th>BmR</th>
<th>BmA</th>
<th>BeA</th>
<th>BeR</th>
<th>BeK</th>
<th>BnA</th>
<th>BnR</th>
<th>Bmer</th>
<th>Bir</th>
<th>Bmu</th>
<th>Bsh</th>
<th>Bbl</th>
</tr>
</thead>
<tbody>
<tr>
<td>BmC</td>
<td>0.005</td>
<td>0.002</td>
<td>0.026</td>
<td>0.029</td>
<td>0.023</td>
<td>0.017</td>
<td>0.018</td>
<td>0.018</td>
<td>0.024</td>
<td>0.021</td>
<td>0.021</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>BmR</td>
<td>0.006</td>
<td>0.009</td>
<td>0.025</td>
<td>0.028</td>
<td>0.024</td>
<td>0.016</td>
<td>0.018</td>
<td>0.018</td>
<td>0.024</td>
<td>0.021</td>
<td>0.021</td>
<td>0.024</td>
<td>0.020</td>
</tr>
<tr>
<td>BmA</td>
<td>0.003</td>
<td>0.005</td>
<td>0.031</td>
<td>0.034</td>
<td>0.027</td>
<td>0.022</td>
<td>0.024</td>
<td>0.023</td>
<td>0.026</td>
<td>0.026</td>
<td>0.027</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>BeA</td>
<td>0.030</td>
<td>0.028</td>
<td>0.030</td>
<td>0.031</td>
<td>0.016</td>
<td>0.024</td>
<td>0.025</td>
<td>0.019</td>
<td>0.022</td>
<td>0.019</td>
<td>0.022</td>
<td>0.024</td>
<td></td>
</tr>
<tr>
<td>BeR</td>
<td>0.034</td>
<td>0.029</td>
<td>0.032</td>
<td>0.017</td>
<td>0.019</td>
<td>0.027</td>
<td>0.028</td>
<td>0.022</td>
<td>0.025</td>
<td>0.022</td>
<td>0.025</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>BeK</td>
<td>0.055</td>
<td>0.053</td>
<td>0.043</td>
<td>0.050</td>
<td>0.057</td>
<td>0.022</td>
<td>0.021</td>
<td>0.018</td>
<td>0.021</td>
<td>0.016</td>
<td>0.022</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>BnA</td>
<td>0.051</td>
<td>0.048</td>
<td>0.049</td>
<td>0.050</td>
<td>0.052</td>
<td>0.058</td>
<td>0.002</td>
<td>0.019</td>
<td>0.025</td>
<td>0.022</td>
<td>0.021</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>BnR</td>
<td>0.053</td>
<td>0.045</td>
<td>0.052</td>
<td>0.052</td>
<td>0.053</td>
<td>0.059</td>
<td>0.002</td>
<td>0.021</td>
<td>0.027</td>
<td>0.023</td>
<td>0.022</td>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>Bmer</td>
<td>0.037</td>
<td>0.035</td>
<td>0.036</td>
<td>0.041</td>
<td>0.045</td>
<td>0.038</td>
<td>0.052</td>
<td>0.053</td>
<td>0.024</td>
<td>0.020</td>
<td>0.021</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>Bir</td>
<td>0.044</td>
<td>0.043</td>
<td>0.044</td>
<td>0.043</td>
<td>0.042</td>
<td>0.043</td>
<td>0.052</td>
<td>0.054</td>
<td>0.033</td>
<td>0.012</td>
<td>0.018</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>Bmu</td>
<td>0.054</td>
<td>0.052</td>
<td>0.053</td>
<td>0.053</td>
<td>0.053</td>
<td>0.043</td>
<td>0.055</td>
<td>0.057</td>
<td>0.034</td>
<td>0.025</td>
<td>0.014</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>Bsh</td>
<td>0.043</td>
<td>0.041</td>
<td>0.042</td>
<td>0.040</td>
<td>0.045</td>
<td>0.043</td>
<td>0.053</td>
<td>0.054</td>
<td>0.037</td>
<td>0.031</td>
<td>0.039</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>Bbl</td>
<td>0.031</td>
<td>0.030</td>
<td>0.031</td>
<td>0.027</td>
<td>0.037</td>
<td>0.030</td>
<td>0.044</td>
<td>0.045</td>
<td>0.023</td>
<td>0.025</td>
<td>0.032</td>
<td>0.029</td>
<td></td>
</tr>
</tbody>
</table>

BmC, *B. maccaini* Cooperation Sea; BmR, *B. maccaini* Ross Sea; BmA, *B. maccaini* S. Atlantic Ocean; BeA, *Bathyraja* sp. (*cf. eatonii*) S. Atlantic Ocean; BeR, *Bathyraja* sp. (*cf. eatonii*) Ross Sea; BeK, *B. eatonii* Kerguelen; BnA, *Bathyraja* sp. (dwarf) S. Atlantic Ocean; BnR, *Bathyraja* sp. (dwarf) Ross Sea; Bmer, *B. meridionalis* S. Atlantic Ocean; Bir, *B. irrasa* Kerguelen; Bmu, *B. murrayi* Kerguelen; Bsh, *B. shuntovi* New Zealand EEZ; Bbl, *Bathyraja* sp. (blond) NZ EEZ. Note the shallow divergences (<0.01) among BmC/BmA/BmR and BnA/BnR, and BeA/BeR shown in bold.
Based on the sequence divergences observed among the *Bathyraja* spp. (Table II and Fig. 2), the large sequence divergences among *B. eatonii* from the Kerguelen Plateau and from the South Atlantic–Ross Sea provide evidence for two species in these regions. The species, referred to as *B. eatonii* from the Antarctic continental shelf and slope, is a species distinct from *B. eatonii* from the Kerguelen Plateau (the type locality). Therefore, it is a new and undescribed species and should be referred to as *Bathyraja* sp. (*cf. eatonii*), until it is formally described and named. Preliminary biological data indicate a difference in length–mass relationships between the two species (Francis, 2006), but a formal taxonomic description awaits examination of the Kerguelen type specimens of *B. eatonii* held in the Muséum National d'Histoire Naturelle, Paris (pers. comm.).

The COI sequence divergences observed among the *Bathyraja* spp. were low relative to values reported among other chordates (Hebert et al., 2003) but appear typical of other Chondrichthyes, including skates. A recent report has shown similar low sequence divergences among 12 *Bathyraja* species in the North Pacific with COI divergences ranging from 0·005 to 0·049, average 0·036 (Spies et al., 2006). Rates of mtDNA evolution may be lower in skates than in other chordates; nucleotide substitution rates in the Cyt *b* and COI genes in sharks are seven- to eight-fold lower than in primates or ungulates (Martin et al., 1992; Martin & Palumbi, 1993), and nucleotide substitution rates in Cyt *b* in poikilothermic vertebrates are several-fold lower than rates in mammals and birds (Johns & Avise, 1998).

The species identified from DNA sequences in the Ross Sea comprise *B. maccaini*, *Bathyraja* sp. (dwarf) and *Bathyraja* sp. (*cf. eatonii*), and all three were sampled and sequenced from two or more areas: *B. maccaini* in the Cooperation Sea, Ross Sea and South Atlantic Ocean; *Bathyraja* sp. (*cf. eatonii*) and *Bathyraja* sp. (dwarf) in the Ross Sea and South Atlantic Ocean. For *Bathyraja* sp. (dwarf), the low sequence divergences and single clade (Fig. 2) provided no evidence for significant divergence among the South Atlantic and Ross Sea populations.

In contrast, there was a significant divergence among specimens of *Bathyraja* sp. (*cf. eatonii*) from the Ross Sea and South Atlantic Ocean, with two well-supported clades (Fig. 2), that might be indicative of two cryptic species isolated in these Ocean basins. There were six fixed nucleotide differences and three amino acid substitutions among the Ross Sea and the South Atlantic Ocean specimens for Cyt *b* and four fixed nucleotide differences (sequence divergence 0·017) but no amino acid substitutions for COI (sequence divergence 0·005). The sequence from the one specimen collected in the Cooperation Sea clustered with specimens from the Ross Sea (Fig. 2) and not with specimens from the geographically closer Kerguelen Plateau (Fig. 1), which may be isolated by the sub-Antarctic Convergence and a deep ocean basin (3500–4000 m). Skates in general are absent from deep ocean basins (Long, 1994), which may act as barriers to gene flow and promote regional speciation among isolated plateaus, although *Bathyraja* spp. are known to extend to c. 3000 m (Last & Yearsley, 2002). Two morphologically recognized species in the North Pacific Ocean, *Bathyraja lindbergi* Ishiyama & Ishihara and *Bathyraja maculata* Ishiyama & Ishihara, had an equally low COI sequence divergence of 0·005, with no fixed nucleotide differences, while two other morphologically recognized species: *Bathyraja*
abyssicola (Gilbert) and Bathyraja aleutica (Gilbert) had a low COI sequence divergence (0.008) with four fixed nucleotide differences between the two species (Spies et al., 2006). Analysis of Cyt b sequences in the thornback ray Raja clavata L. revealed a nucleotide divergence of 0.006 among European and Mediterranean populations (Chevolot et al., 2006). A similar study of Cyt b sequences in the thorny ray Amblyraja radiata (Donovan) showed no significant genetic differentiation among samples from Newfoundland, Iceland and the North Sea (Chevolot et al., 2007).

The results for B. maccaini appear more complex, with three well-supported clades in the pooled Cyt b–COI tree (Fig. 2): Ross Sea; Atlantic Ocean, including one specimen of B. maccaini from the Cooperation Sea, captured at 61° E and four specimens from the Cooperation Sea, captured at 72° E. However, the sequence divergences among the three areas are shallow, even when re-calculated based on clustering rather than location. Grouping one specimen from the Cooperation Sea (at 61° E) with the South Atlantic Ocean group, the Cooperation Sea–Atlantic divergences increased (Cyt b from 0.003 to 0.011 and COI from 0.002 to 0.007). For Cyt b, there were 13 variable and eight phylogenetically informative nucleotide substitutions (5/8 were third nucleotide positions within codons), but only three were geographically consistent. For COI, there were 10 variable and nine phylogenetically informative nucleotide substitutions (7/9 were third nucleotide positions within codons), but only one resulted in an amino acid change (V > M, base positions 4–6; Ross Sea = V, Atlantic Ocean and Cooperation Sea = M).

Unlike many teleosts, skates appear to be weak dispersers. Skates have internal fertilization, and the lack of a pelagic egg and juvenile stage restricts juvenile dispersal potential. Tagging experiments with adult skates in the North Atlantic Ocean indicate limited dispersal <50 nautical miles in the North Sea (Walker et al., 1997; Buckley & Metcalfe, 2002) and typically <60 nautical miles in the northwest Atlantic Ocean (Templeman, 1984), while preliminary tagging results for A. georgiana in the Ross Sea found dispersal up to 74 km over 733 days (Francis & Smith, 2002). The two major subpolar cyclonic circulations, the Weddell Sea gyre and the Ross Sea gyre, and a smaller gyre to the east of the Kerguelen Plateau (Orsi et al., 1995) may isolate skates in ocean basins, separated by areas of deepwater (Long, 1994). Chevolot et al. (2007) noted that in the North Atlantic Ocean, the continental shelf edge appears to act as a barrier to migration in R. clavata but not A. radiata inspite of the two species having similar life histories and overlapping distributions.

The taxonomic status of the populations or species of Bathyraja sp. (cf. eatonii) and of B. maccaini in the Ross Sea and the South Atlantic Ocean will be resolved only with the collection of additional specimens from these sea areas and geographically intermediate areas, as opportunities arise. For Bathyraja sp. (cf. eatonii), the observed COI sequence divergences, although shallow, are typical of Bathyraja species in the North Pacific Ocean (Spies et al., 2006), while the Cyt b divergences are greater than those reported among Atlantic and Mediterranean populations of R. clavata (Chevolot et al., 2006) and among eastern and western Atlantic populations of A. radiata (Chevolot et al., 2007) and are indicative of major sub-division among ocean basins. These results have implications for the conservation and management of skates in the Southern Ocean.
We are grateful to the New Zealand Ministry of Fisheries and CCAMLR Scientific Observers for the collection of skate specimens in the Ross Sea, specifically S. Cave, F. Stoffenberg, C. Keith, D. Barber, T. Fitzgerald, S. O’Reilly, G. Johnson, T. Brunning, C. Morrish, H. Schalk, R. Hansen, J. Williamson, M. Dee, G. Breedt, R. Guild and C. Blinco. C. Anderson collected specimens in the Ross Sea and South Atlantic during 2006. The skippers and crew of the longline F.V. Avro Chieftan, Janas, San Aotea II and San Aspiring are thanked for their role in specimen collection and storage under arduous conditions at sea. R. Williams (Australian Antarctic Division Hobart) supplied tissue samples from the Cooperation Sea. G. Duhamel and R. Causse (Muséum National d’Histoire Naturelle, Paris) supplied tissue samples of three species from the Kerguelen Plateau. Three anonymous referees provided comments on the manuscript. Preservation and storage costs for voucher specimens of tissue sampled Bathyraja spp. registered into the National Fish Collection were provided by the Te Papa Collection Development programme (APs 2575 and 2578). D. Steinke was supported through funding to the Canadian Barcode of Life Network from Genome Canada through the Ontario Genomics Institute. The research was supported by the New Zealand Ministry of Fisheries, project ANT200502.

References


© 2008 NIWA


