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For over 10 years, DNA barcoding has been used to
identify specimens and discern species. Its potential
benefits in parasitology were recognized early, but its
utility and uptake remain unclear. Here we review stud-
ies using DNA barcoding in parasites and vectors affect-
ing humans and find that the technique is accurate
(accords with author identifications based on morphol-
ogy or other markers) in 94-95% of cases, although
aspects of DNA barcoding (vouchering, marker implicat-
ed) have often been misunderstood. In a newly compiled
checklist of parasites, vectors, and hazards, barcodes are
available for 43% of all 1403 species and for more than
half of 429 species of greater medical importance. This is
encouraging coverage that would improve with an ac-
tive campaign targeting parasites and vectors.

Use of molecular data to distinguish species of
parasites and vectors

Over 1 billion people currently suffer from a neglected
tropical disease, which in most cases is caused by a para-
site [1,2]. Accurate identification of parasites and vectors is
key to improving detection and monitoring and to under-
standing the epidemiological and ecological characteristics
of parasitic diseases. However, morphological discrimina-
tion of most parasite and many vector species is notoriously
difficult. Both parasites and arthropod vectors (see Glos-
sary) are often small and possess strongly dissimilar stages
in their life cycles and many lack diagnostic morphological
characters (e.g., [3,4]). This complicates both morphologi-
cal identification and understanding the links between
developmental stages found either in different host species
or in the environment. For these reasons, molecular data
are widely used to complement traditional morphological
approaches [3,5].

Because of the wide range of taxa that cause and trans-
mit disease to humans, DNA sequences are commonly used
to identify specimens and delineate species, but different
markers and genes are often used for different groups of
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parasites and vectors (e.g., [6]). For example, noncoding
spacer regions between ribosomal subunits are often used
to differentiate among helminth species, whereas cyto-
chrome b is often used for haemosporidians. In some
groups, dedicated online resources exist to store, compare,
and analyze these data (e.g., http://mbio-serv2.mbioekol.
lu.se/Malavi/ [7], http:/eupathdb.org [8]). However, the use
of these tools and related resources is predicated on a priori
knowledge of the higher taxonomy of the specimens being
identified. This situation begged the development of DNA
barcoding, a large-scale, standardized approach to the
molecular characterization of biodiversity to aid identifi-
cation where specialist knowledge may be unavailable.
Although several techniques have been referred to as
‘barcoding’ [9], this term usually refers to the approach
proposed by Hebert et al. [10,11], currently adopted by
International Barcode of Life (iBOL) (http:/ibol.org). In
most eukaryotes, a DNA barcode is a sequence of approxi-
mately 650 nucleotides at the 5’ end of the mitochondrial
cytochrome c oxidase subunit I (COI) gene from a specimen
vouchered in an appropriate collection facility (Box 1). The
standardization implicit in barcoding — a single tool appli-
cable to all taxa, sequences linked to physical specimens —
is of obvious potential utility in parasitology. Just
10 months after DNA barcoding with COI was first pro-
posed, the case for applying it to parasites and vectors of
medical importance was made by Besansky and colleagues
[12]. They saw DNA barcoding neither as a displacement of
morphology nor as a method that will work in all cases.
Instead, barcoding can provide identifications and, in
undescribed taxa, a proxy for species-level delineations
that are more closely tied to the natural entities that cause
and transmit disease [12].

Glossary

Barcode Index Number (BIN): an operational taxonomic unit assigned to a group
of similar DNA barcode sequences through the sequence clustering method built
into BOLD [44] and used as a proxy for species-level identification.

Hazard: an arthropod that commonly stings, bites, or secretes toxic substances
and causes harm.

Morphological voucher: a preserved specimen archived in a collection facility
(e.g., a museum). In DNA barcoding, vouchering (the preservation of
morphological vouchers) is standard practice for specimens from which DNA
barcode sequences were obtained.

Vector: an organism that transmits pathogens.
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Box 1. DNA barcodes and BOLD
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DNA barcoding is the use of a short, standardized DNA sequence for
specimen identification and species delineation and discovery [10]. In
animals, the standard DNA barcode is a 658-bp fragment at the 5’ end
of the mitochondrial COI gene, often referred to as the ‘Folmer’ [96] or
‘barcode’ region. DNA barcoding is based on the observation that the
COI sequence variation between species is typically far greater than
that occurring within them. As a result, species can be distinguished
based on unique clusters of barcode sequences generated using
efficient, scalable algorithms [44,97]. The barcode region is flanked by
conserved fragments where broad-spectrum primers (e.g., [96]) can
be used to amplify the target marker.

The BOLD system is a free, publicly accessible repository for barcode
sequences, particularly COl [98]. Each BOLD record comprises two
components linked to a single specimen: the sequence record and the
corresponding specimen record. The sequence record contains standard
DNA barcode marker information, (i.e., the COI nucleotide sequence) as
well as chromatograms, quality scores, primers used, and corresponding
data from additional markers. The specimen data record contains
taxonomic identification of the specimen from which the tissue was
sourced, detailed provenance information, museum collection and
voucher catalog numbers, digital specimen images, and personal
attributions (e.g., collector, identifier, photographer). For parasites too
small to be subsampled, an aliquot of extracted DNA may serve as a
molecular voucher and a similar specimen from the same host
(paragenophere, sensu [99]) can be used as a morphological voucher.

A decade later, barcode coverage was quantitatively
evaluated in animals [13,14] and functional groups such
as agricultural pests [15]. Fiser Pe¢nikar and Buzan [16]
reviewed applications of DNA barcoding in vectors and
parasites but both the coverage and the utility of this
technique remain unclear in these organisms, partly be-
cause no species checklist exists against which to bench-
mark progress. Here we address these two gaps by
quantifying barcode success in the medical parasitology
literature and barcode coverage against a newly compiled
checklist of medically important parasites and vectors.
While it is not our primary aim to discuss the merits of
DNA barcoding, which have been thoroughly debated
(reviewed in [14,17-19]), we revisit some of its potential
applications in medical parasitology, most of which were
foreseen by Besansky et al. [12] and speculate how these
may fit with rapidly changing sequencing technologies.

How useful has DNA barcoding been in medical
parasitology?

A search of the literature yielded 83 empirical studies using
DNA barcoding in organisms that affect human health, as
defined in our checklist of parasites, vectors, and hazards
(see below), which are listed in Table S1A in the supplemen-
tary material online [two searches: March 2014 — Web of
Science, Thomson Reuters, topic string: “DNA barcod*”
AND (parasit®* OR vector*); July 2014 — Google Scholar
search string: parasite OR vector “DNA barcode”].

The use of DNA barcoding is growing in medical para-
sitology (Figure 1) but critical aspects concerning its scope
(Box 1) have received less attention. For example, only 31/
83 studies mentioned morphological or DNA vouchers,
which in many cases were deposited in university collec-
tions of uncertain accessibility and longevity. Thirteen
additional studies using ‘DNA barcoding’ employed down-
stream regions of COI, other mitochondrial markers, or
ribosomal markers (Table S1B in the supplementary

BOLD also offers user-friendly tools for the curation, management,
and dissemination of DNA barcode data, such as distance-based
modules for statistical analysis (e.g., tree building, minimum distance
to specimens in other species), data aggregators (e.g., distribution
maps, accumulation curves, virtual datasets), automated GenBank
submission, and an online identification engine for querying un-
known barcode sequences [98]. The recently introduced BIN algo-
rithm [44] (Box 2) assigns COIl sequences to operational taxonomic
units, providing a framework for dealing with samples not identified
to the species level.

The quality of records deposited in BOLD is automatically
evaluated. Those with over 500 bp of COI sequence, trace files, a
voucher reference and a full set of provenance information are
considered ‘barcode compliant’, form the core reference library, and
are submitted to GenBank with the keyword ‘BARCODE’ [100]. Se-
quences of lower quality or lacking information, as well those mined
from GenBank, are used to broaden the comparative context of the
BOLD identification engine. BOLD data are continually automatically
screened for sequence quality and errors, and inconsistencies
requiring curatorial input (e.g., misidentifications, contamination)
can also be flagged by BOLD users and data managers. Overall,
BOLD structure and workflows provide an iterative framework for
validating and cross-referencing data across multiple projects,
empowering users to collaborate on improving data quality and
standardization.

material online). DNA barcoding has been unevenly ap-
plied among the functional groups in parasitology. Endo-
parasites were the subject of 18 studies, which were
generally of small scope (mean number of species studied
= 5.6, median = 2) and most mainly concerned wildlife
parasites that infect humans only rarely. Notably absent is
any empirical barcoding work on protist parasites. By
contrast, the 46 studies of arthropod vectors tended to
include data from four times as many species (mean num-
ber of species studied = 23.1, median = 5) as studies of
endoparasites. Most (39/46) studies of arthropod vectors
seem motivated at least in part by medical importance, as
they concern mosquitoes (Culicidae), sand flies (Phleboto-
minae), and black flies (Simuliidae) in regions where these
insects transmit major disease.

We evaluated the utility of DNA barcoding in 60 of the
83 studies in which authors identified specimens and
discriminated between at least two species that were on
the checklist or otherwise identified as medically impor-
tant. In the remaining studies (seven new-locality records,
seven vector blood-meal analyses, two medical diagnoses,
two new-species descriptions, and five others), barcode
sequences were used to search public databases without
independent estimates of accuracy, or data were otherwise
not relevant, and barcoding success was therefore not
assessed in these studies.

In all but one of the 60 studies in which species were
discriminated using DNA barcodes, additional data were
used to verify identifications as indicated by reference to
morphology (e.g., citation of taxonomic keys, sequencing of
museum specimens, character descriptions; 50/60 studies)
and by the use of one to five additional molecular markers
(29/60 studies). In 52 (87%) of these 60 studies, error rates
were less than 10%, meaning that >90% of DNA barcode
groupings matched species considered valid by the authors
and that >90% of specimens were assigned to correct
species by barcodes. While informative, this metric does
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Figure 1. DNA barcoding accuracy and publication rate. The proportion of species correctly distinguished (i.e., matching the conclusions of the study authors) by DNA
barcodes is plotted against the number of species sampled (A) and the number of molecular markers used in addition to the barcode region of cytochrome oxidase | (B) in
60 studies. The frequency of studies with different proportions of correctly identified species is shown in (C). The corresponding plots of the proportions of specimens
assigned to the correct species by DNA barcodes are below (D-F). The mean proportions of species correctly distinguished and of specimens assigned to the correct species
by DNA barcodes are compared in studies differing by whether they reported using morphology (G); bars, standard error of the mean. The number of studies using DNA
barcodes in medically important parasite and vector species is plotted against year of publication (H).

not take into account wide variation in the numbers of
specimens and species analyzed. We corrected for this by
summing the numbers of species and specimens across
studies and calculating proportions of correct identifica-
tions from these totals (where concordance with the taxo-
nomic conclusions of the study authors was interpreted as
taxonomic accuracy). For example, if 8/10 species in study
A and 70/90 species in study B are distinguishable by DNA
barcodes, the overall DNA barcode success rate is 0.78. We
did not control for the fact that some studies sampled the
same species and sequences or for the inclusion of species of
no medical importance. The total numbers of species and
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specimens are therefore somewhat inflated, but propor-
tions of taxonomic accuracy are not. Although studies dealt
mainly with closely related species (i.e., congeners), some
also included taxonomically distant organisms. Because
such comparisons are not strong tests of DNA barcoding as
a tool for species discrimination, we excluded specimens
and species that were clearly outgroups in phylogenetic
analyses. In cases of ambiguity, a conservative approach
was taken. For example, it was unclear whether one or two
species of Ascaris were sampled by Betson et al. [20], and
the barcode success rate for this study was scored as 0/2
species and 0/78 specimens.



Overall, barcodes provided ‘correct’ discriminations in
1202/1275 (94%) species and 8553/8985 (95%) specimens.
The proportion of species correctly distinguished with
DNA barcodes was unrelated to both the number of mo-
lecular markers used and the number of species sampled
(P > 0.129) (Figure 1). The proportion of specimens cor-
rectly identified was smaller in studies that used more
molecular markers (rho=—-0.251, P =0.024) and unrelated
to the number of specimens analyzed (P = 0.226). In
studies that used morphology, barcode results matched
author conclusions in a smaller proportion of species
(mean orphology = 85%, Mean 5, morphology = 91%) and
specimens (Mean morphology = 86%, MeanN no morphology =
94%) than in studies that did not mention morphology,
but the differences were not significant (two-tailed ¢-tests,
P > 0.432; Figure 1).

In several studies there were clear mismatches between
barcode results and author conclusions based on morphol-
ogy and/or other molecular markers. However, even in
studies with such problems [21,22], COI provided accurate
information (i.e., matched the authors’ taxonomic conclu-
sions) in over half of the specimens or species studied.
Authors were generally hesitant to accept implications of
DNA barcode data in cases of conflict with patterns seen in
other molecular markers [23—-26]. These cases could be due
to nuclear copies of mitochondrial DNA, symbiont DNA, or
haplotype sharing among species resulting from incom-
plete lineage sorting, recent divergence, or hybridization.
Although these phenomena have occasionally been ob-
served in relevant taxa [27-30], the overall concordance
of DNA barcode results with the conclusions of authors
employing independent data suggests that they may be
relatively rare.

How many parasites and vectors have been DNA
barcoded?

We sought to quantify DNA barcode coverage in parasite
and arthropod vector species but found no comprehensive
species list against which to perform a gap analysis. We
therefore compiled a checklist that we compared with the
Barcode of Life Data (BOLD) system (http:/www.bold-
systems.org), where COI sequences from 2 215 607 indi-
vidual eukaryotes had been deposited by March 2014,
including representatives of over 135 000 species. Ini-
tially, our checklist included 1341 species listed in [31-
39] and only arthropods among the vectors, ectoparasites,
and hazards listed in these sources. Relevant leeches and
horsehair worms were subsequently added on the sug-
gestion of an anonymous reviewer (62 species, based on
[40,41]). We also added snail hosts of some trematodes
(e.g., Schistosoma) commonly studied in efforts to reduce
transmission. The final list of 1403 species (Table S2 in
the supplementary material online) does not include
viruses, prions, bacteria, or fungi nor does it include all
eukaryotic parasites of humans. Nonetheless, it provides
an informative gauge of barcode coverage in eukaryotes
that affect human health and serves as a baseline for
compiling additional species that should be given priority
for barcoding. Nomenclature was validated using the
Catalogue of Life (http:/www.catalogueoflife.org), the
Global Biodiversity Information Facility Checklist Bank
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Table 1. Summary of DNA barcode coverage of medically
important species of parasites, vectors, and hazards at March
2014

Total Implicated or
congeners of
species implicated
in major disease

Number of species 1403 429
Species with 1-9 DNA barcodes 313 103
Species with >10 DNA barcodes 284 116
Species with >1 public sequence 484 178
Species in which all data were 217 80
mined from GenBank

Number of DNA barcode sequences 30775 15 500

(http://tools.gbif.org/mamefinder/), and, in some cases, the
primary literature.

Of the 18 phyla represented in the checklist, the most
prevalent were Arthropoda (65% of species), Platyhel-
minthes (15%), and Nematoda (9%). Ectoparasites com-
prised 35% of species, vectors 33%, endoparasites 30%, and
other hazardous organisms 19% (some arthropod species
occur in multiple categories; e.g., both ectoparasite and
vector). In total, 30 775 COI barcode sequences >500
nucleotides in length were unevenly distributed among
these organisms, with no data available for 57% of species
(Table 1 and Figure 2). Barcodes have been obtained from
more than ten specimens in 20% of all species. The most
intensely sequenced organisms were mosquitoes: Aedes
vexans (Meigen) (1985 COI sequences); Culex quinquefas-
ciatus Say (1686 COI sequences); Coquillettidia perturbans
(Walker) (1005 COI sequences); and Aedes trivittatus
(Coquillet) (987 COI sequences). In 36% of the species in
which at least one specimen has been barcoded, all data
were mined from GenBank. While these sequences repre-
sent the barcode region of COI, they typically lack the
associated specimen and sequence data necessary to re-
ceive annotation with the reserved keyword BARCODE by
the International Nucleotide Sequence Database Collabo-
ration (INSDC) (Box 1). Of 372 species in which some
sequences were originally published on BOLD, no
sequences have yet been made public in nearly a third
(113 species).

Many species in the checklist have little medical rele-
vance, for example, having been recorded in humans just
once. We assessed barcode coverage in a subset of 429 spe-
cies of vectors and parasites implicated in malaria and
other major diseases (defined as neglected tropical dis-
eases by the World Health Organization (WHO) [1] and
Fenwick [2] or considered notable by Liu [42]). Half (50%)
of all sequences were obtained from these more medically
important species (Table 1), although they represent
less than a third of the checklist. Species coverage is also
higher in this subset: barcodes are available from 52% of
these ‘core’ species. In just over a third of these cases,
all sequences represented in BOLD were mined from
GenBank.

As seen in the review of the literature, fewer barcode
sequences exist for endoparasites (Figure 3) and sampling
intensity is also generally low in this group. For example,
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Figure 2. Distribution of 1403 species of animals and apicomplexans associated with disease in humans according to the number of barcode sequences available.

only three species of Schistosoma are represented by more
than ten sequenced specimens and few barcodes have been
obtained from several major soil-transmitted and food-
borne helminths [Ascaris lumbricoides (L.) (four barcode
sequences), Trichuris trichiura (L.) (two), Necator amer-
icanus (Stiles) (three), Ancylostoma duodenale (Dubini)
(three), Clonorchis sinensis (Cobbold) (three), Fasciola
hepatica (L.) (four)].
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Figure 3. Number of barcode sequences in 1403 medically important animal and
apicomplexan species according to functional groups.
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How does barcode coverage of parasites and vectors
compare with other taxonomic and functional groups?
In 2012, Frewin et al. [15] found DNA barcodes for 54% of
1044 agricultural pest species of quarantine significance,
which is better than the 43% coverage for 1403 medically
important species in early 2014. In our dataset, more
species are represented solely by GenBank-mined data
(42% of sequenced species) compared with agricultural
pests (33%). This is important because GenBank sequences
do not always meet standards for barcode compliance (Box
1), limiting their utility in diagnostic applications relying
on taxonomically authenticated reference data. Also in
2012, Boykin et al. [43] found that 82% of 88 invasive pest
species have records in BOLD. Other illuminating compar-
isons are made with iBOL campaigns focused on various
taxa, in which coverage ranges from 30% to 40%. Barcode
sequences have been obtained from 4019 of the world’s
10 000 bird species, 49 000 of 165 000 Lepidoptera, and
over 10 000 of 31 000 teleost species (data from BOLD
searches, March 2014).

In light of the small number of species on the checklist of
parasites and vectors, and considering that 10 000 new
barcodes are added to BOLD each week [44], at first glance
43% coverage may not denote great advancement. It is also
low in light of the importance of these organisms to human
welfare, and given the appeal by Besansky et al. [12]. How-
ever, as outlined below, because of logistical and technical
obstacles specific to working with parasites and vectors,
43% coverage arguably represents reasonable progress.



A major factor that has limited DNA barcoding of para-
sites and vectors is that it is framed and funded as biodi-
versity science, which is not a priority in public health or
medicine. Barcoding ‘campaigns’ (e.g., Fish-BOL) focus on
particular taxa [43] rather than polyphyletic functional
groups such as parasites and vectors, a constraint that
follows naturally from the distribution of taxonomic exper-
tise. Additionally, among some end-users, species-level
diagnosis may not be considered relevant. For example,
medical clinicians often use the same treatments for most
pathogens in the same higher taxon (and often employ
formalin fixation for samples, which degrades DNA). When
species-level diagnosis is desired, numerous standardized
molecular (particularly immunological) approaches are
available [45], although these continue to be considered
too complex for routine clinical work in endemic areas (e.g.,
[6,46]). Sampling endoparasites in blood or excreta is also
likely to be impeded by the ethical and legal necessity of
obtaining informed patient consent (e.g., see [47]). Speci-
men identification can play an important role in vector-
control programs [48], particularly when parasites can be
transmitted by ecologically distinctive vectors (e.g., den-
gue, Aedes albopictus (Skuse), Aedes aegypti (L.) [49]) that
may be subject to different control strategies. Nonetheless,
large-scale disease-reduction efforts, including vector-
control programs, often focus on strategies [50-52] in
which coarse taxonomic information is sufficient. For ex-
ample, although insecticide-treated bed nets may have
distinct effects on Anopheles species that differ widely in
importance as malaria vectors [53], this knowledge was not
necessary to initiate or implement an effective bed-net
program or to evaluate key end points [54].

The deep evolutionary divergence among endopara-
sites also presents obstacles for a standardized molecular
approach. Broad-spectrum primers for the barcode frag-
ment are lacking in several groups, a major impediment
for high-volume barcoding [55]. Recently developed pri-
mers with high efficacy should aid barcoding progress in
parasitic nematodes [56]. In the Platyhelminthes, a two-
step process was proposed, with truly universal 18S rDNA
primers serving to narrow the identity of unknown speci-
mens sufficiently to select more taxon-specific primers to
be used for COI [57]. In protists, 18S screening has been
suggested as a tool not only for primer selection but also to
indicate which of a range of still-undefined barcode targets
would be used for species discrimination [58]. This is
particularly necessary in taxa that lack mitochondria,
such as Giardia, Entamoeba, Blastocystis, and Cryptospo-
ridium, and COI may also prove problematic in taxa with
high numbers of nuclear copies of mitochondrial DNA
(e.g., Toxoplasma [59]). Paradoxically, however, the prim-
er ‘problem’ can also be a boon. It is often difficult to obtain
endoparasite samples free of host tissue [3] and similar
problems occur when analyzing blood meals in hematoph-
agous arthropods [60-63]. Some level of primer specificity
is therefore desirable to avoid co-amplification of parasite
and host DNA.

In light of these difficulties, 43% coverage is fair prog-
ress, particularly given that species sampling has pro-
ceeded without oversight or coordination. (A relevant
campaign initiated in 2009, HealthBOL, awaits funding;
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T.R. Gregory, personal communication.) For example,
higher barcode coverage in agricultural pests is likely to
reflect the large number of relevant Lepidoptera [15],
which are the focus of a major barcoding campaign
(http://www.lepbarcoding.org), rather than a concerted ef-
fort to safeguard food supplies. Indeed, a critical compo-
nent of such a campaign is the existence of a species
checklist such as the one provided here (Table S2 in the
supplementary material online). Finally, one further com-
parison suggests that medical importance may have more
than doubled the likelihood that a species has been DNA
barcoded. If species sampling were random, checklist cov-
erage should be close to 3.5% [13] or 15% [14], which are the
estimated proportions of described metazoan species that
were DNA barcoded in 2012.

Prospects for the future

Although DNA barcoding (or any form of molecular diag-
nostics) may not offer convenient tools for clinical diagnosis
at present (but see [64,65]), its potential utility in epide-
miological studies and vector control is clearer. Climate
change, urbanization, and globalized trade and transpor-
tation are altering the distribution of both vectors and
parasites and understanding how these factors influence
human disease transmission and morbidity is important
[66]. For example, the range and incidence of several
unrelated pathogens transmitted by ticks are increasing
in Europe and North America [67-70]. In these and other
emerging zoonoses, it is challenging to attribute changes in
disease dynamics to specific causes, which can include
vector species introductions, changes in local vector com-
petence, changes in population density in both humans and
vectors associated with urbanization and sprawl, altered
irrigation and damming practices, and local and global
human transportation networks [71-74]. DNA barcodes
can provide specific and potentially useful information in
such cases, for example, through early detection of intro-
duced vector species (Table S1 in the supplementary ma-
terial online) or by mapping changes in vector distribution
[75] subsequent to deforestation [76]. Accurate identifica-
tion is necessary to understand the ecology of arthropod
vectors in breeding habitats, which is regaining momen-
tum as a target for mosquito control after long neglect in
favor of indoor spraying and insecticide-treated bed nets
[51,77-79]. Several studies have used DNA barcoding to
identify blood-meal sources from disease vectors (Table S1
in the supplementary material online) (reviewed in [80]).
Such data can be critical for refining models of local
transmission risks; for example, by distinguishing diffi-
cult-to-identify rodent reservoirs of hantavirus, Chagas
disease, and leishmaniasis in Brazil [81] (see also [82]
for an example with reservoirs of avian influenza).

In our view, a standardized, single-locus approach pro-
vides a useful tool for specimen identification, initial de-
lineation of species, and highlighting taxonomic problems
in parasites and vectors. While no single molecular marker
will differ uniformly among the diverse organisms that
cause and transmit disease in humans, and all markers
will fail in some groups, the ‘strategy’ of using different
markers tailored to distinguish species in different groups
quickly leads to an impractical situation for routine
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Box 2. Taxonomic discrepancies illuminated by DNA
barcodes

The coherence of taxonomic names associated with barcode
sequences in species of parasites, vectors, and hazards was
assessed in 13609 public records obtained by searching for
checklist species in the BOLD system. Barcode sequences were
assigned to putative species based on BINs assigned by BOLD.
Sequences from checklist species formed 934 BIN clusters, of which
723 contained more than one sequence. In most (471/723) cases, a
single species name was used to identify organisms in each BIN;
however, 252 BINs were identified using more than one species
name. Some of this discordance may be biologically accurate; that
is, arising from haplotype sharing among species resulting from
incomplete lineage sorting, hybridization, or recent divergence. For
example, BIN clusters do not capture some recently proposed
changes in Plasmodium systematics. In the latter case, a BIN
dominated by 128 sequences of Plasmodium falciparum Welch is
discordant because it includes 14 sequences of Plasmodium sp.
gorilla clade G1 [102], for which the name Plasmodium praefalci-
parum was recently proposed by Rayner et al. [101] based on the
specificity of this lineage for gorillas. The near identity of sequences
of human P. falciparum and P. praefalciparum also occurs in
apicoplast and nuclear genes and in complete mitochondrial
genomes [102]. In other words, arguably, the failure of barcodes
to distinguish between P. falciparum and P. praefalciparum reflects
the ecological basis of this newly proposed species rather than
insufficiency of information in the DNA barcode region or short-
comings of the BIN algorithm. Much of the inconsistency in the
252 discordant BINs is likely to represent nomenclatural error, as
BINs are 90% consistent with taxonomy in other groups [44]. In the
Anopheles funestus Giles species complex, for example, species
recently recognized (based on COI and other markers [103,104]) are
accorded different BINs. The BIN algorithm flags the recently
described human schistosome Schistosoma guineensis (Pageés
et al) as distinct from Schistosoma intercalatum (Fisher) and
correctly classifies misidentified isolates of the former (cf. [30]; see
Table S1 in the supplementary material online). By automatically
flagging discordance in a standardized marker, BOLD provides a
useful starting point for distinguishing between database problems
(misidentifications or inconsistent nomenclature) and biological
phenomena (incipient speciation, hybridization, incomplete lineage
sorting).

identification. To select optimal markers (or sets of mar-
kers), it becomes necessary to identify specimens at a
higher taxon, which is often impossible for nonspecialists.
The importance of standardization is illustrated by mis-
identified Plasmodium sequences in GenBank, which
Valkiunas et al. [5] could note only because the same
marker had been sequenced at sufficient length in all
isolates. This difficulty clearly plagues species in our
checklist (Box 2), in which different names have been used
for many clusters of similar COI sequences. As noted by
Besansky et al. [12], DNA barcoding does not preclude the
use of other markers (indeed, BOLD is equipped to host
such data; Box 1), but the added benefit should be weighed
against added effort in the context of a standardized
approach. The initial use of a single marker (specifically,
COI) can be seen as an optimal choice in a trade-off
between effort and taxonomic confidence (Figure 4). Addi-
tional markers will increase taxonomic confidence, but the
high accuracy initially obtained with barcodes suggests
that the increase will generally be marginal. By contrast,
the small increase in confidence with more markers
requires a substantial increase in effort [83], particularly
in the context of Sanger sequencing and if identifications
need to be made rapidly [43,84].
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Figure 4. Trade-off between taxonomic confidence and effort, as a function of
molecular data. Taxonomic confidence (the likelihood that species will be correctly
distinguished and specimens correctly identified) increases with increasing
molecular data (red line). However, the high accuracy obtained with DNA
barcodes (94-95% in the studies reviewed here; see Figure 1C,F) suggests that
the increase will generally be marginal. Sanger sequencing of each additional
marker results in large increases in effort (reagents, time, and analysis) (blue line).
The blue line also rises over ‘barcode’ to reflect, for example, the primer
development and optimization of extraction techniques that are necessary for
some taxa. The shaded blue area represents effort associated with next-generation
sequencing (NGS) and its haziness reflects the uncertainty stemming from the
rapid pace of change in this field. The initial acquisition of NGS capacity is costly in
terms of both expense and analytic capacity. Thereafter, the cost per sequence
decreases to below that of Sanger sequencing, with sequences from genomes
costing little in principal. However, as discussed in the text (see section on
‘Prospects for the future’), this does not necessarily translate into decreased cost
per specimen and species.

With next-generation sequencing (NGS) technologies,
the cost of obtaining each sequence read from a DNA
template has fallen by orders of magnitude, leading to
the notion that the use of multiple markers for molecular
species identification is an inevitable and positive develop-
ment [17]. Nonetheless, the start-up investment (infra-
structure, training), cost per run (rather than per base
sequenced), and rapid pace of technological change (when
to invest and which platform to invest in) of NGS present
significant obstacles for many [85], and multiple marker
analysis is vastly more computationally intensive [83,86]
and therefore less scalable. Wide use of Sanger sequencing
is likely to continue for some time, as illustrated by its use
in all of the studies in Figure 1H (cf. [17]). Another obstacle
to the wide uptake of NGS in molecular species identifica-
tion is discrepancy between the scale of the information
needed and that produced by the technology. Eukaryotic
species circumscription and specimen identification re-
quire far less than a complete genomic portrait of a speci-
men, but that is the scale of data produced in each
experimental unit of a NGS run. The cost per specimen
is low only if specimens are pooled, which usually requires
unique molecular tagging of the DNA of large numbers of
specimens in each run, a step that is technologically chal-
lenging and, in some platforms, costly. Data storage and
analysis remain a major bottleneck in NGS [87] and, for
this reason, minimalism and standardization also remain
desirable attributes of a standardized NGS species-identi-
fication protocol. For example, one way to view the data
problem is as a trade-off between deeply sequencing each
specimen’s DNA and more shallowly sequencing that of
more specimens, with the aim of optimizing the return on
sequence quality and species-level information content
[87,88]. The DNA barcode generally provides a high level



of accuracy (Figure 1) and, if targeted in NGS, COI para-
logs, heteroplasmy, and contamination can be detected
directly [89], which will further increase the initial taxo-
nomic confidence. One relevant, promising NGS applica-
tion is the inventory of species inhabiting environmental
media through their residual DNA; barcoding has been
used in several such studies (reviewed in [89-91]). Such
approaches could be employed to screen soil and water for
suites of both metazoan vectors and pathogens, instead of
assays that target single species (e.g., [92,93]).

The increased volume of species, specimens, and
sequences emerging with NGS makes the need for compu-
tational efficiency and a standardized library of reference
sequences acute [83,94]. Ideally, such a library should be
dominated by sequences from well-curated specimens
with the strongest possible links to existing names
rather than indiscriminate collections [14,95]. However,
the small numbers of specimens and sequences obtained
from focused collections in type hosts and localities are
generally more conducive to Sanger sequencing than
NGS.

After 11 years, we are less than halfway ‘there’ in
barcoding medically important parasites and vectors
(i.e., barcodes exist for 43% of checklist species), but the
clear utility of the approach and spate of recent work
(Figure 1) are grounds for hope and the parasite and vector
checklist compiled here can help focus future efforts.
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