TITLE: Enhancing DNA metabarcoding performance and applicability with bait capture enrichment and DNA from conservative ethanol

RUNNING TITLE:
Capture enrichment & etDNA for metabarcoding

AUTHORS:
Gauthier M.¹, ²*, Konecny-Dupré L.¹, Nguyen A.³, Elbrecht V.⁴, Datry T.², Douady C.J.¹, Lefébure T.¹*

AUTHORS AFFILIATION
1. Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
2. DYNAM Lab, Research Unit RiverLY, Irstea Centre de Lyon-Villeurbanne, Villeurbanne Cedex, France
3. Biofidal, Vaulx-en-Velin, France
4. Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada

*Corresponding authors: mailys.gauthier@irstea.fr, tristan.lefebure@univ-lyon1.fr

ABSTRACT
Metabarcoding is proposed as an alternative identification tool to compensate for the taxonomic limitations encountered with traditional morphological approaches. However, metabarcoding comes with two major impediments which slow down its adoption. First, the picking and destruction of organisms for DNA extraction are time and cost consuming and do not allow organism conservation for further evaluations. Second, current metabarcoding protocols include a PCR enrichment step which induces errors in the estimation of species diversity and relative biomasses. In this study, we first
evaluated the capacity of capture enrichment to replace PCR enrichment using controlled freshwater macrozoobenthos mock communities. Then, we tested if DNA extracted from the fixative ethanol (etDNA) of the same mock communities can be used as an alternative to DNA extracted from pools of whole organisms (bulk DNA). We show that capture enrichment provides more reliable and accurate representation of species occurrences and relative biomasses in comparison with PCR enrichment for bulk DNA. While etDNA does not permit to estimate relative biomasses, etDNA and bulk DNA provide equivalent species detection rates. Thanks to its robustness to mismatches, capture enrichment is already an efficient alternative to PCR enrichment for metabarcoding and, if coupled to etDNA, is a time-saver option in studies where presence information only is sufficient.

KEYWORDS

bait capture, ethanol DNA, DNA enrichment, metabarcoding, biomass estimation, macrozoobenthos

INTRODUCTION

Reliable and accurate taxa identification is fundamental in biological sciences. Poor taxonomic identification can lead to cascades of error affecting our knowledge and understanding not only in theoretical and fundamental biology, but also in applied fields leading to poor management decisions (Bortolus, 2008). It distorts our ability to infer processes in ecology and evolution, to manage and conserve human-impacted systems and to carry out human health and resource programs (Bortolus, 2008; Leys, Keller, Räsänen, Gattolliat, & Robinson, 2016; Prié, Puillandre, & Bouchet, 2013). Poor taxonomic identification occurs when identification to species level is not possible (coarse taxonomic resolution) or when identification is incorrect (misidentification). Regarding coarse taxonomic resolution, G. K. Martin, Adamowicz, and Cottenie (2016) investigated macrozoobenthos community distribution in freshwater streams at different taxonomic level (family, genus and species) and found a spatial structuration only when the species identification level was reached. Sweeney, Battle, Jackson, and Dapkey (2011) also showed that differentiation between a human-impacted stream from a non-
impacted one was more accurate when water-quality monitoring metrics were calculated at a species-
level resolution. Misidentification in two sloth species induced erroneous biogeographical patterns (de
Moraes-Barros, Silva, & Morgante, 2011). In Vietnam, a non-vector species was targeted by Malaria
control program because it was misidentified as a reputed vector of the disease (Van Bortel et al.,
2001). Difficulties encountered with morphological based taxonomy often results in poor taxonomic
identification (Baird & Hajibabaei, 2012; Creer et al., 2016). Cryptic species, limited expertise,
damaged or juvenile specimens and even cost and time constraints in the case of applied research are
all problems encountered in morphological identification leading to misidentification or coarse
taxonomic resolution (Bringloe, Cottenie, Martin, & Adamowicz, 2016; Hajibabaei, Baird, Fahner,
Beiko, & Golding, 2016; Ji et al., 2013; Sweeney et al., 2011).

In the past decade, DNA-based identification has been proposed as an alternative to morphological
approaches. DNA barcoding uses the sequence of a genetic marker of one specimen, usually of an
organelle genome for eukaryotes (e.g. mitochondria for animals and chloroplast for plants, see (Creer
et al., 2016) for overview) and assign it to a species name within a reference database (Hebert,
Ratnasingham, & de Waard, 2006). DNA barcoding supposedly addresses limitations in
morphological identification by accurately discriminating species regardless of their morphology
(Sweeney et al., 2011), development stages (Hubert, Delrieu-Trottin, Irisson, Meyer, & Planes, 2010)
or sex (Forshaw, 2010). Recent advances in high throughput technologies enabled the emergence of
DNA metabarcoding, the barcoding of pool of specimens in a single reaction which permit to work on
whole community at once (Pompanon et al, 2011). With metabarcoding, DNA-based identification
became a promising method that is more accurate, faster and less expensive than morphological
identification (Ji et al., 2013; Stein, White, Mazor, Miller, & Pilgrim, 2013; Valentini et al., 2015).
Despite DNA-based identification has been presented as an ideal alternative to morphological
identification for more than a decade, it is currently marginally used as a routine identification tool in
academic and applied areas. A major roadblock to the democratization of metabarcoding is the
absence of standardized metabarcoding protocol that has been established and validated by the
scientific community (Leese et al., 2018). This is mainly due to methodological roadblocks
encountered throughout each step of sample processing (i.e. DNA extraction, barcode enrichment, sequencing, bioinformatic treatment and taxonomic assignment) which need to be resolved before DNA-based identification is largely adopted. Hereafter, we focused on two major metabarcoding roadblocks: specimen picking before extraction and barcode enrichment.

Specimen picking is particularly critical for samples with a low targeted organism over substrate ratio. It aims to separate individuals from substrate (e.g. leaves, sand…) prior to DNA extraction to avoid PCR inhibition (Elbrecht, Vamos, Meissner, Aroviita, & Leese, 2017) and to limit the quantity of material to be processed during DNA extraction. This step is time and cost consuming. Direct extraction from fixative agent, usually ethanol, has been proposed as a time-saver alternative to specimen picking (Hajibabaei, Spall, Shokralla, & van Konynenburg, 2012; Zizka, Leese, Peinert, & Geiger, 2018). When fixative agent is used as a DNA template, organisms are not destroyed and are conserved for further taxonomic work or downstream analyses (Leese et al., 2016). Little research has been conducted on this alternative (but see (Hajibabaei et al., 2012; Zizka et al., 2018)) and a rigorous comparison with traditional specimen picking is warranted before it can be used as a standard template of DNA in biological studies.

PCR enrichment bias is often considered as the most problematic roadblock in metabarcoding because it may alter species detection and relative abundance recovery of species (Elbrecht & Leese, 2017; Leese et al., 2018; Piñol, Senar, & Symondson, 2018). Prior to sequencing, DNA barcodes are first amplified by PCR using primers that may not have the same number of mismatches across taxa (Piñol, Mir, Gomez-Polo, & Agustí, 2015). Consequently, amplification efficiency is expected to be non-equal across taxa, leading from under-amplification to no amplification of some taxa in the worst case scenario. PCR bias was demonstrated for fungi (Bellemain et al., 2010), bacteria (Frank et al., 2008), invertebrates (Piñol et al., 2015) and vertebrates (Arif, Khan, Al Sadoon, & Shobrak, 2011). Other factors affect PCR like GC content (Aird et al., 2011) or inhibitors that can remain after DNA extraction but primer bias is commonly presented as the major cause of biases in metabarcoding (e.g.
In consequence, a lot of work focused on primer design to decrease PCR biases with, for instance, the use of several primer pairs, degenerated primers or amplification of several DNA barcodes (Drummond et al., 2015; Elbrecht & Leese, 2017; Elbrecht et al., 2016; Gibson et al., 2015; Jusino et al., 2019; Leray & Knowlton, 2017; Zhang, Chain, Abbott, & Cristescu, 2018). These efforts increased the species detection rate but the quantitative bias was not solved completely (Piñol et al., 2018).

Avoiding PCR enrichment will, by definition, solve the PCR bias issue (Porter & Hajibabaei, 2018). Low (Linard, Crampton-Platt, Gillett, Vogler, & Timmermans, 2015) or high (Porter & Hajibabaei, 2018) coverage metagenome sequencing (i.e. sequencing a community DNA without any enrichment) can be used to assemble entire organelle genomes. This approach provides an efficient way to recover species richness and taxa relative biomass, although the proportion of organelle reads is extremely low making metagenome sequencing much more expensive than PCR metabarcoding (Bista et al., 2018; Gómez-Rodríguez, Crampton-Platt, Timmermans, Baselga, & Vogler, 2015; Zhou et al., 2013). Furthermore, only a small part of an organelle genome is usable for taxonomic assignment as reference databases mostly contain barcode sequences (e.g. COI for metazoan, 16S for bacteria, ITS for fungi, (Creer et al., 2016)). Although methods are being developed to reduce organelle genome sequencing cost (Macher, Zizka, Weigand, & Leese, 2017), the construction of exhaustive organelle genome reference databases will be a long-term and expensive process. Another PCR-free alternative is capture enrichment where targeted sequences hybridize to baits and are retrieved by magnetism (Dowle, Pochon, C. Banks, Shearer, & Wood, 2016). Contrary to metagenome sequencing, capture enrichment increases the proportion of targeted reads reducing the sequencing cost. Baits are long oligonucleotides (more than 60 bp) which are designed from reference sequences. Capture enrichment should be more robust to identify taxa in a community than PCR enrichment because (i) thousands of different baits can be designed and (ii) when sequences are unknown or species are polymorphic, few mismatches between the baits and the targeted sequences are not expected to bias DNA enrichment as they would do with PCR primers. For example, one bait designed...
for a species of the genus *Danio* permitted to detect others *Danio* species in the Amazon basin where the reference species was absent (Mariac et al., 2018). In a single study, capture enrichment was compared to PCR enrichment and was found to detect more taxa but was unable to estimate relative abundances (Dowle et al., 2016). Liu et al. (2016) and Wilcox et al. (2018) have shown that relative abundances can be recovered with capture enrichment if species-specific corrections were to be applied to take into account variation in the number of mitochondria copy number among species (Liu et al., 2016; Wilcox et al., 2018). Such corrections are unfortunately not suitable to the complexity of field samples. Dowle et al. (2016) study was based on natural communities only described at a coarse taxonomic level (family to genus level) and with indirect biomass measurements. Thus, the capacity of capture enrichment to both describe a community diversity and its relative biomass without species-specific biomass corrections still need more testing using controlled communities.

In this study, we first investigated the capacity of cytochrome oxidase subunit I (COI) gene capture enrichment to detect taxa and retrieve initial biomass without species specific correction. Second, we evaluated if DNA extracted from ethanol (etDNA) can be used as an alternative to organism picking and homogenization (bulk DNA) by comparing species detection and initial biomass recovery of the two DNA templates with PCR and capture enrichment. Tests were carried out using two types of freshwater mock communities (MC): (i) low diversity MC (10 species) with variable dry biomass across taxa and (ii) high diversity MC (52 taxa) with homogeneous biomass across taxa from (Elbrecht & Leese, 2015).

MATERIALS & METHODS

1. **Mock community design**

Freshwater macrozoobenthos specimens for the 10 species mock communities (MC) were sampled from various streams in east of France during May 2017, except for two species, *Gammarus fossarum* and *Chironomus riparius*, which came from Irstea livestock, France (ECOTOX team, RiverLy, France). The 10 species were chosen to represent a wide taxonomic range and because they can be
easily identified to the species level by the naked eye (table 1). Two hundred milliliters of ethanol
96% (EtOH) were dispense in bottles and individuals were placed alive in the ethanol. Eight samples
with different relative biomass for the 10 species were constructed (table 1). Samples were then stored
for 6 months at 4°C until DNA extraction. DNA was extracted from the whole organisms (bulk DNA)
and from the preservative EtOH (etDNA).

The 52 taxa mock communities were designed by Elbrecht and Leese (2015). In a nutshell, for ten
different MC, a roughly similar dry biomass was collected from 52 taxa identified to the lowest
taxonomic level based on morphology, and the homogenized tissue pool was then extracted for each
sample using a salt extraction protocol (see (Elbrecht & Leese, 2015) for details). Because the biomass
was fairly homogeneous among taxa in these MC, we only use these MC to compare the performance
of capture and PCR enrichment in predicting species occurrences.

2. DNA extraction of the 10 species mock communities

Bulk DNA. For each MC, individuals were picked up and sorted by species in petri dishes. They
were let to dry overnight and dry biomass for each species was weighted. Mollusc shells and
Trichoptera cases were removed prior to the weighing. Individuals were pooled together and the entire
community was grounded with a bead mill MM200 (Retsch) during 4 min at 30 Hz. The whole
homogenate was extracted (mean ± SD: 245.8 ± 28.6 mg) with FastDNA® Spin Kit for Soil (MP
Biomedicals, USA) following manufacturer’s protocol. The extracted DNA was purified with
Agencourt AMPure XP purification beads (Beckman Coulter, USA) to further remove solvents.

etDNA. For each mock community, roughly 50 mL of preservative ethanol was collected. Glycogen
and sodium acetate were added to precipitate DNA and samples were placed at -80°C for at least 72
hours. After centrifugation, ethanol was removed and after total ethanol evaporation, the dried residue
was dissolved in the buffer solution of NucleoSpin Tissue® kit (Macherey-Nagel GmbH, Germany)
and DNA was extracted following manufacturer's instructions.
3. COI mock community reference databases

The 10 species reference database was built by sequencing the COI Folmer region of each species of the 10 species mock communities (Folmer, Black, Hoeh, Lutz, & Vrijenhoek, 1994). One specimen per species was extracted following the same protocol as for bulk DNA. PCR reactions were performed in a total volume of 25 µL with 1X of PCR standard buffer (including 3 mM MgCl₂, Eurobio, France), 0.05 U/µL of EurobioTaq DNA polymerase (Eurobio, France), 0.8 mM of each dNTP (Eurogentec, Belgium), 0.1 mg/mL of BSA (New England BioLabs, USA), 0.4 µM of each primer (LCO1490/HCO2198, Table S1) and 0.5 µL of template DNA. The amplification consisted in an initial denaturation at 95°C for 3 min, followed by 40 cycles of denaturation at 95°C for 20 s, annealing at 51°C for 30 s and extension at 72°C for 45 s, with a final extension at 72°C for 5 min. Purified template DNA was sequenced on both strands with the PCR primers using standard Sanger sequencing (Biofidal, France). All sequences were manually checked for errors and clean up with Finch TV software 1.4.0. This protocol did not work for one species (*Heptagenia sulphurea*) and its sequence was downloaded from NCBI to complete the 10 species reference database (GenBank Accession Number HE651395.1).

The 52 taxa reference database was already available for the 52 taxa MC (Elbrecht & Leese, 2017). It includes the haplotypes of all organisms used in their experiment, leading to a reference database of 212 COI sequences. For one taxon (Nematoda), Elbrecht and Leese (2017) could not get any amplification. Since this taxon is missing in Elbrecht and Leese (2017) haplotype reference database, it was not taken into account for downstream analysis.

4. Amplicon sequencing and analysis

Library preparation and sequencing. For the 10 species and 52 taxa MC bulk DNA, a 421 bp fragment within the COI Folmer region was amplified with the BF2/BR2 primer set with Illumina Nextera tails which is well suited for freshwater macrozoobenthos (Elbrecht & Leese, 2017), Table

Note: The text continues with further details not included in this snippet.
S1). For etDNA, a shorter region of 178 bp (Fwh1 primer set with Illumina Nextera tails, (Vamos, Elbrecht, & Leese, 2017), Table S1) was targeted because we assumed ethanol DNA to be more degraded than bulk DNA. PCR reactions were performed in triplicates in a total volume of 25 µL with 1X of PCR buffer (including 3mM MgCl₂ and 400 µM each dNTP, QIAGEN® Multiplex PCR kit, Qiagen, Germany), 0.5 µM of each primer and 10 ng of template DNA for bulk DNA or 5 µL of template DNA for etDNA. The amplification consisted in an initial denaturation at 95°C for 5 min, followed by 25 (bulk DNA) or 35 (etDNA) cycles of denaturation at 95°C for 30 s, annealing at 50°C (bulk DNA) or 52°C (etDNA) for 30 s and extension at 72°C for 2 min, with a final extension at 72°C for 10 min. Triplicate PCR products were pooled and purified with Agencourt AMPure XP purification beads (Beckman Coulter, USA) and quantified using QuantiFluor® dsDNA System (Promega, USA). Ten ng of each purified PCR products were then used in a second PCR to dual index each sample with a unique tag combination (Table S3 for tag combinations details) and to add Illumina adapters. PCR reactions were performed in a total volume of 25 µL with 1X of PCR buffer (BIOAmp® Blend Mix, Biofidal, France), 2.5 nM of MgCl₂, 200 µM of each dNTP, 0.25 µM of Illumina primer (Table S1) and 0.02 U/µL of HOT BioAmp Taq (Biofidal, France). PCR products were purified with Agencourt AMPure XP purification beads (Beckman Coulter, USA), quantified using QuantiFluor® dsDNA System (Promega, USA) and pooled at the same concentration (2 nM) for sequencing. The PCR amplicon libraries were sequenced using a 2*250 paired-end V3 MiSeq sequencing kit (Biofidal, France).

Bioinformatic analysis. Reads were delivered demultiplexed and adapter trimmed. The reads of the 52 taxa mock communities, bulk DNA and etDNA of the 10 species mock communities were processed independently with the same bioinformatic pipeline. First, forward and reverse reads were merged with Vsearch 2.8.4 with a minimum overlapping of 10 nucleotides and a maximum difference of the overlapping region of 5 nucleotides (Rognes, Quince, Nichols, Flouri, & Mahé, 2016). Then, the primer regions were removed from the merged reads with cutadapt 1.9.1 (M. Martin, 2014) and the reads were quality filtered (maximum expected error (ee) of 1, minimum length of 200, no Ns
allowed) and dereplicated with Vsearch. Sequences observed less than twice (≤ 2 reads) were removed. Then, chimeras were de novo detected and removed with Vsearch. Finally, sequences were clustered with a similarity cutoff of 97% identity into MOTUs (Molecular Operational Taxonomic Units). MOTUs were assigned to species using the 10 species reference database or the 52 taxa reference database with the blastn algorithm (Camacho et al., 2009). Only alignments with an e-value under 1E-10, a query cover over 200 bases for bulk DNA and over 90 bases for etDNA and an identity over 97% were conserved as good alignments for further analysis. MOTUs were also compared to a complete COI protein reference database made from 8 taxa (Asellus aquaticus ADA69754.1, Daphnia pulex AAD33231.1, Dinocras cephalotes AGZ03516.1, Gammarus fossarum YP_009379680.1, Physella acuta YP_008994230.1, Radix balthica HQ330989.1, Sericostoma personatum AJR19241.1, Thremma gallicum AJR19254.1) present in one or both MCs using diamond 0.9.22 (blastx, more sensitive option, e-value threshold of 1E-10 (Buchfink, Xie, & Huson, 2014). This allowed us to detect COI sequences even if they did not belong to the species used in the MC. We also estimated the rate of contamination by comparing the quality filtered reads to a protein database containing the proteomes of 100 eukaryotic species from Ensembl (Zerbino et al., 2017) and Ensembl Metazoa (Kersey et al., 2017) as well as the proteomes of 837 prokaryotic species retrieved from the Microbial Genome Database for Comparative Analysis (Uchiyama, Mihara, Nishide, & Chiba, 2015) selecting one species per genus. Sequences were assigned to coarse taxonomic groups (archaea, eubacteria, fungi, plant, protist, protostomia—here Arthropoda, Annelida, Brachiopoda, Mollusca, Nematoda and Platyhelminthes —and other metazoa —corresponding to Deuterostomia) using the best diamond hit (blastx, more sensitive option, e-value threshold of 1E-10).

5. Capture sequencing and analysis

Bait design. While one of the primary goals of the present study is to assess capture versus PCR enrichment efficiency using mock communities, we chose to develop a larger set of baits that could be used in future assessment of French freshwater macrozoobenthos diversity. Up to now and aside from non-Chironomidae dipteran, 3,245 macrozoobenthos species belonging to 22 orders have been
identified in small and medium streams of France (Aukema & Rieger, 2013; Coppa, 2019; D’Hondt &
Ben Ahmed, 2009; Dusoulier, 2008; Gargominy et al, 2011; Grand & Boudot, 2007; Henry &
Magniez, 1983; Le Doaré & Vinçon, 2019; Pattée & Gourbault, 1981; Piscart & Bollache, 2012;
Queney, 2011; Serra et al, 2015; Souty-Grosset et al, 2006; Thomas, 2019; Tillier, 2019; Vallenduuk,
2004). One hundred twenty two species of six orders can be considered as marginal in streams and
were thus discarded. All the available COI sequences were downloaded for the 3,123 remaining
species from GenBank and BOLD with PrimerMiner 0.18 in December 2016 (Elbrecht & Leese,
2016). Four orders had less than half of their known taxa with available COI barcode and were
discarded. Within the 12 remaining orders, the species without COI sequences were barcoded
whenever possible, i.e. when tissues could be obtained. Organisms were extracted using Chelex
(BioRad, USA) and the PCR and sequencing conditions were identical to those of section 3 of the
methods. Sequences were deposited on GenBank (97 species, GenBank Accession Numbers
MK584300:MK584515). At the end, 1,525 species out of 1,689 known species had a barcode
available, representing more than 90% of the targeted species (Table S2). For bait development,
sequences were processed by order. First, COI sequences were aligned with blastx 2.7.1 to a reference
Drosophila yakubai COI sequence (Accession Number: NC_001322.1) and identical sequences were
collapsed using a perl script (http://github.com/TristanLefebure/collapse_to_uniq_seq). Then, 120 bp
baits were constructed in silico using BaitFisher with a tilling of 60 bp and a cluster threshold of 5%,
leading to a total of 15,038 baits generated from 100,367 unique sequences (Mayer et al., 2016). The
COI in silico baits were then sent for RNA bait synthesis to Arbor Biosciences (USA).

Library preparation, hybridization and sequencing. Starting quantity of DNA was 1 µg for bulk
DNA (10 and 52 taxa MC) and between 14 and 57 ng for etDNA. DNA of each sample was sheared
into approximately 600 bp nucleotide fragments by ultrasound sonication with a Qsonica Q800R
(Qsonica, USA). Library preparation was conducted using NEBNext® Ultra TM II DNA Library Prep
Kit for Illumina® (New England BioLabs, USA) following manufacturer’s instructions. Briefly, after
sheared DNA end repair, the 5’ ends were phosphorylated and the 3’ ends were A-tailed. Then,
Illumina Nextera tails (Table S1) were ligated to the DNA fragments followed by a clean-up and a size selection of 500-700 nucleotides long fragments with Agencourt AMPure XP purification beads (Beckman Coulter, USA). Finally, DNA fragments were amplified to dual index the libraries (Table S3 for tag combinations details) and to add Illumina adapters (Table S1). COI capture enrichment was conducted using myBaits® Custom kit following manufacturer’s instructions (Arbor Biosciences, USA). One hundred ng of library DNA was used for capture enrichment for bulk DNA and 230 ng for etDNA following manufacturer’s instructions for degraded DNA. Baits were diluted 10 times and hybridization lasted 24h for both DNA templates with the exception that hybridization for etDNA was done at 55°C instead of 65°C following manufacturer’s instructions for degraded DNA. The final library amplification was performed in a total volume of 50 µL per reaction with the KAPA HiFi DNA Polymerase (Kapa Biosystems, USA) with P5 and P7 Illumina primers (Table S1) using the following conditions: initial denaturation at 98°C for 2 min, followed by 21 cycles of denaturation at 98°C for 20 s, annealing at 60°C for 30 s and extension at 72°C for 1 min, with a final extension at 72°C for 5 min. Capture library concentrations were determined by qPCR with a KAPA qPCR kit (KAPA Library Quant Kit, Kapa Biosystems, USA) and pooled at the same concentration for sequencing. The capture libraries were sequenced using a 2*300 paired-end V3 MiSeq sequencing kit (Biofidal, France).

Bioinformatic analysis. Reads were delivered demultiplexed and adapter trimmed. As for PCR analysis, the reads of the 52 taxa MC, bulk DNA and etDNA of the 10 species MC were processed independently with the same bioinformatic pipeline. First, forward and reverse reads were merged with Vsearch with a minimum overlapping of 10 nucleotides and a maximum difference of the overlapping region of 5 nucleotides (Rognes et al., 2016). Because shearing could lead to fragment longer than 600 nucleotides, merged and non-merged sequences were conserved for downstream bioinformatic steps. Reads were then quality filtered (maximum ee of 1, minimum length of 150, 50 Ns allowed) with Vsearch. Because the bait set contained baits for other genes for other projects (i.e. 16S, NAD1, NAD4, NAD5, CYTB, and ATP6) and because their presence in the bait set can alter downstream results, the reads corresponding to these genes were removed from the quality filtered
reads in all downstream analysis. They were recovered with a blastn on a reference database (blastn-
short, e-value threshold of 1E-10) containing the complete sequence of NAD1, NAD4, NAD5, CYTB
and ATP6 genes of 8 species (Asellus aquaticus ADA69754.1, Daphnia pulex AAD33231.1, Dinocras
cephalotes AGZ03516.1, Gammarus fossarum YP_009379680.1, Physella acuta YP_008994230.1,
Radix balthica HQ330989.1, Sericostoma personatum AJR19241.1, Thremma gallicum AJR19254.1),
the 16S of the 10 species MC (Table S1) and the 16S corresponding to the 52 taxa MC (downloaded
from NCBI). The remaining reads were assigned to species using the 10 species reference database or
the 52 taxa reference database using BLAST algorithm (Camacho et al., 2009). Only alignments with
an e-value over 1E-10, a query cover over 250 and an identity over 97 were used for taxonomic
assignment. As for amplicon, filtered reads were also compared to a complete COI protein reference
database to estimate the total number of COI reads and to a protein database to estimate the rate and
origin of contaminations.

6. Capture efficacy

Capture efficacy (sensus (Cha & Thilly, 1993)) was evaluated by measuring the percentage of COI
reads for each capture library (i.e. capture specificity) and the X-fold enrichment (i.e. capture
efficiency) as in Maggia et al. (2017). The percentage of COI reads is the ratio of the number of COI
reads assigned with diamond on the COI protein database to the number of quality filtered reads. To
estimate the X-fold enrichment, four samples from the 10 species MC were sequenced without any
enrichment. The X-fold enrichment was calculated using the ratio of the percentage of COI reads from
the capture library to the percentage of COI reads from the enrichment-free library.

7. Species detection and initial biomass recovery

To compensate for sequencing effort as well as total biomass variation among samples, read count
assigned to species and biomass (mg) were transformed in proportion of reads and proportion of
biomass, respectively.
Species detection. A species was considered present in a sample when represented by at least one read. We calculated the detection sensitivity (S) which measures the number of detection success to the total number of trials ($S = \frac{\text{total number of species detected}}{\text{number of samples} \times \text{number of taxa}}$).

Biomass recovery. For the bulk DNA and etDNA of the 10 species MC, logistic models were built to investigate the relationship between read proportion and biomass proportion. For each DNA template and enrichment method, we compared sets of mixed effects models (i.e. no fixed effect and biomass as fixed effect with no random effect, random intercept, random intercept and slope by species or samples) using Aikake’s Information Criterion (AIC, (Burnham & Anderson, 2002)). We also summarized to what extent each method was able to predict species biomass by comparing the observed read proportions to the expected read proportions where read proportion perfectly predict biomass proportion (i.e. a $y=x$ relationship). To this aim, we calculated the mean absolute error (MAE) for each method as follow: $\frac{1}{n} \sum |\text{observed} - \text{expected}|$ (Willmott & Matsuura, 2005). The lower the MAE is, the closer the observed read proportions are to the expected read proportions.

All statistical analyses were conducted with R (R Core team, 2018). All logistic models relating biomass proportion to read proportion were fitted using lme4 package (glmer functions, with a Logit link and a Binomial family, (Bates, Mächler, Bolker, & Walker, 2014)).

RESULTS

1. Sequencing results

For bulk DNA, amplicon sequencing produced 60,337 to 365,331 raw reads and capture sequencing 165,089 to 857,040 raw reads per sample. For etDNA, amplicon sequencing produced 209,425 to 365,331 raw reads and capture sequencing 217,240 to 911,484 raw reads (Table 2). In both approaches, the capture sequencing effort was higher but a higher proportion of reads was discarded through the bioinformatic pipeline, particularly for etDNA (Table 2).
2. Capture efficacy

The percentage of COI reads after capture enrichment (i.e. capture specificity) ranged from 5.89 to 77.90% (mean ± se: 49.68% ± 26.03) for bulk DNA and from 12.50 to 28.05% (mean ± se: 19.09% ± 5.82) for etDNA (Table 2, Table S5). For bulk DNA, the 52 taxa MC showed higher and more homogeneous results (mean ± se: 69.30% ± 6.51) in comparison with bulk DNA of the 10 species MC (mean 25.16% ± 18.81). The percentage of COI reads that were subsequently assigned to a MC species was very heterogeneous among DNA template and enrichment methods. Amplicons on bulk DNA gave the best results (mean: 96.45% COI assignment), followed by capture on bulk (62.33 %), amplicon on etDNA (46.36 %) and finally capture on etDNA (33.71 %). Reads that do not match to the reference MC COI database can have multiple origins including contamination from other organisms. The majority of reads were assigned to protostomians for all but one experiment -- capture enrichment on etDNA -- where half of the reads belonged to eubacteria and the other half to protostomians (Table 2, Figure S2). The average X-fold enrichment (i.e. capture efficiency) was 1331 (range: 275-3692) meaning that on average 1331-fold more COI reads were sequenced with capture enrichment than without any enrichment.

3. PCR and capture enrichment for bulk DNA

Species detection. Capture enrichment detected systematically more species (S=0.96) than PCR (S=0.68) among the 10 species MC (Figure 1). In PCR libraries, three species were never detected, belonging to Gastropoda (Ancylus fluviatilis and Physella acuta) and Amphipoda (Gammarus fossarum). With capture enrichment, every species was detected in 5 out of 8 samples (Figure 1). In the 52 taxa MC, we found the same pattern, with capture enrichment (S=0.96) detecting more species than PCR enrichment (S=0.93) (Figure 2). Each enrichment method failed to detect a small but different set of taxa.
Biomass recovery. Whatever the enrichment method, following the AIC, the best mixed model to predict initial species biomass using species read proportion was the model combining biomass as a fixed effect and species as a random effect on the intercept and slope (Table 3). This suggests that the mean read proportion between species is different independently of their biomass and that the relationship between biomass proportion and read proportion also differs among species (Figure 3).

Using this type of mixed models, a significant relationship between biomass and read proportion was found for both enrichment methods (PCR: p-value=0.024; capture: p-value=0.001, Figure 3). The mean absolute errors between observed and expected read proportion if biomass proportions were to be perfectly translated into read proportions (i.e. y=x relationship) were higher for PCR (MAE=0.11) than for capture (MAE=0.056). Under a scenario where there is no relationship between biomass and read proportions and where each species contribute to the same read proportion independently of its biomass (i.e. 1/10 read proportion), the MAE would be of 0.07, again highlighting that the PCR enrichment step wiped out most of the biomass signal. While absolute biomass variations may be lost, we also tested if biomass ranks could be recovered using Spearman's rank correlation coefficient. Again PCR enrichment performed poorly compared to capture enrichment (average Spearman rho 0.53 and 0.67 for PCR and capture enrichment, respectively).

4. PCR and capture enrichment for etDNA

Globally, etDNA was a better template than bulk DNA to detect species for both PCR and capture enrichment (Figure 1). Concerning PCR enrichment, one species was never detected in etDNA samples instead of three for bulk DNA and detection sensitivity was higher for etDNA ($S=0.85$) than for bulk DNA ($S=0.69$). The species that were never detected were also different between the two DNA templates. However, these discrepancies instead of being link to the DNA template can also be the result of using different primers for the two DNA templates (BF2/BR2 for bulk DNA; fwh1 for etDNA). We subsequently tested the influence of the primers by re-extracting etDNA from the 10 species MC and amplifying it both with the fwh1 primer set and the BF2/BR2 primer set with the same PCR protocols used in section 4 of the methods. When clustering all these samples based on
their species occurrence (presence/absence) patterns, we observed that samples clustered in almost all
cases by enrichment method and PCR primers and not by DNA template (Figure 4). Therefore, the
DNA template has little to no impact on species detection compared to the enrichment method and
primers. Concerning initial biomass recovery, the same models as for bulk DNA were selected for
etDNA using the AIC (Table 3). However, contrary to bulk DNA, for both enrichment methods, no
significant relationship between biomass proportion and read proportion was found (PCR: p-
value=0.37; capture: p-value=0.58). The difficulty to infer biomass from read proportion using etDNA
was also supported by high MAE values (0.102 and 0.104 for PCR and capture enrichment,
respectively) and low rank correlations (average Spearman rho= 0.40 and 0.28 for PCR and capture
enrichment, respectively).

DISCUSSION

Capture versus PCR enrichment for metabarcoding

Capture enrichment consistently led to higher species detection rates compared to PCR enrichment
whatever the DNA template or sample taxonomic complexity. Using capture, in the 10 species MC,
only one species was missed in one third of the samples where it was at low abundance (dry biomass <
1 mg). In the 52 taxa MC, capture enrichment also globally performed better that PCR enrichment in
terms of species detection (20 against 35 failed detections, respectively). Nevertheless, both methods
missed different sets of taxa. In PCR enrichment, the commonly missed taxa systematically presented
1 or 2 mismatches with the primer pair (Figure S1) reinforcing the view that primer mismatches are
the main cause for species non-detection (Elbrecht et al., 2017). Regarding capture enrichment, 8 taxa
had no bait designed for them (i.e. Ceratopogonidae, Blephariceridae, Dicranota, Simuliidae,
Tipulidae, Trombidiformes, Dugesia and *Daphnia pulex*) but only two taxa (*Daphnia pulex* and
Dugesia) were almost systematically missed. These two taxa have COI haplotypes that are at a
divergence of at least 15% to any bait whereas the 6 detected taxa have haplotypes that are closer to
baits originally designed for other taxa (Figure S1). For both enrichment methods, the divergence to
the oligonucleotide (i.e. primer or bait) appears to be a determinant factor for species detection.
Nevertheless, capture enrichment is much more robust to this divergence issue as it combines three characteristics that PCR enrichment misses. First, capture enrichment is less sensitive to mismatches (18 mismatches or 15% divergence) than PCR (2 mismatches or 5% divergence). Second, because thousands of different baits are designed for a given 120-base region, the probability to encounter mismatches is reduced with capture. Finally, several 120-base regions (5 in this study leading to a total cover of 600 bases) are targeted, increasing the probability to design at least one functional bait for a given species even if this species was not in the database used to design the baits. This ability to detect more robustly known and unknown biodiversity is a pivotal step towards a better understanding of ecosystem function and structure.

Capture enrichment also yields read proportions that are better predictors of species relative biomasses than PCR enrichment for bulk DNA. Both enrichment methods presented a positive relationship between relative biomass proportion and read proportion but this relationship was closer to a linear y=x relationship for capture enrichment. That said, a random species effect still remained in the capture enrichment model. Its origin could be attributed to a bait bias similar to the primer bias encountered in PCR enrichment but it can also be explained by other factors. Indeed, using a mitochondrial marker to reconstruct an entire dry biomass community is eventually doomed to fail. First, the amount of mitochondrial DNA belonging to a species in a sample will vary as a function of the average number of mitochondrial genomes per cell which is likely to vary extensively among species, life stages and tissues (Rooney et al, 2015). Wilcox et al. (2018) found that total initial species DNA abundances could be recovered using capture enrichment if a correction was applied to normalize for variation in the number of mitochondrial genome per cell. Second, dry biomass proportions are a very rough estimator of cell numbers. Thus, variability in cell number per biomass and in mitochondria per cell combines to blur the biomass/read proportion relationship. A similar mock community experiment but with precise knowledge of the number of mitochondrial genome per species in a sample is needed to better test for the existence of bait biases. One can argue that even if capture enrichment yields good estimates of each species mitochondrial genome proportion in a
sample, this estimate will still be a poor biomass or abundance proxy. Interestingly, here we found that read proportions from gene capture enrichment already provides biomass rank estimates which in many ecological contexts would already be informative and may be sufficient.

Ethanol DNA as a fast alternative to bulk DNA for species detection

Our results demonstrate the potential of etDNA to replace bulk DNA for macrozoobenthos samples if only species occurrence data is required. Species detection was not determined by DNA template but by the enrichment method and the primer pair used. Hence, species detection with etDNA was equivalent to species detection with bulk DNA. Nonetheless, no relationship between read proportion and biomass proportion was highlighted for etDNA. For biomass recovery to work with etDNA, each species should release a quantity of DNA in the ethanol proportionally to its biomass. However, the release of DNA in the ethanol might differ among development stages or species. When put alive in ethanol, some individuals regurgitate and release a lot of their DNA (Anderson et al., 2013). For example, in the class Gastropoda, one sub-class has an operculum which isolates them from the environment. When put in ethanol, these gastropods close their shell and the quantity of DNA released will be lower than for other gastropods without operculum. Also, after ethanol fixation, depending on the presence of a shell or a thick exoskeleton, the amount of released DNA during the soaking period may also be extremely variable across taxa. In conclusion, while DNA from ethanol offers a fast and non-destructive way to identify the species in a sample, differences in the way species release their DNA in ethanol seem to prevent the use of ethanol for quantitative estimates.

Optimising capture enrichment for metabarcoding

Despite capture enrichment already delivers better results than PCR enrichment in terms of species detection or biomass prediction, the efficiency and specificity of this emerging approach can still be optimized for metabarcoding purposes. Although capture enrichment was efficient to enrich the COI sequences of the macrozoobenthos present in our samples with an enrichment of at least 275-fold compared to non-enriched libraries, the percentage of COI reads was highly heterogeneous and low.
for some samples. The specificity of the capture enrichment was particularly low when the diversity of
the sample was low (25% of COI reads for the 10 species MC compared to 69% for the 52 taxa MC).

How the taxonomic diversity of a sample influences the efficiency of capture enrichment remains
unexplained and warrants further experiments where the impact of a gradually increasing sample
diversity is tested while controlling for other factors such as the extraction protocol or the overall
phylogenetic diversity.

The specificity of capture enrichment estimated by the number of COI reads that matched a taxa
included in the MC was systematically lower than with PCR enrichment (about 40% of the COI reads
did not match MC taxa). When looking at the coarse taxonomic composition of the COI reads
sequenced after capture enrichment, we found that for bulk DNA, most of the reads (> 95%) were
assigned to protostomians ruling out the possibility that bacterial or plant COI contaminations alone
are reducing capture specificity. DNA from other protostomians that interact with the taxa included in
the MC (e.g. preys or parasites) may contaminate the samples and reduce capture specificity.

Nevertheless, we would expect the same to happen with PCR enrichment which is not the case.

Alternatively, Li, Schroeder, Ko, and Stoneking (2012) found that the robustness of capture to
mismatches is also a drawback when targeting mitochondrial genes: in addition to capture the targeted
mitochondrial gene, it also captures nuclear copies of this gene (NUMTs). The lower specificity of
capture enrichment observed in our samples, but not observed with PCR enrichment, might therefore
be explained by rampant NUMT contaminations.

For capture enrichment on etDNA, we estimated that almost half of the reads belonged to
eubacteria and the other half to protostomians. This is likely to be linked to the regurgitation of gastric
microbiota and the release of epidermic microbiota by some species. By this process, bacterial DNA
may actually dominate the ethanol DNA. In this experiment, a lower hybridization temperature was
used for etDNA (55°C) than for bulk DNA (65°C) in the hope of capturing more fragmented DNA.

Retrospectively, this lower temperature is likely to have decreased the specificity of the capture
enrichment and increased the representation of bacterial DNA. Noteworthy, 95% of the bacterial reads did not share any similarity with the mitochondrial COI, again reinforcing the idea that the large amount of bacterial reads in etDNA samples is probably the result of the combination of non-stringent hybridization conditions and bacterial DNA dominance in etDNA.

As found in this study and others (Liu et al., 2016; Mariac et al., 2018), the divergence between the targeted DNA and the baits is a crucial factor in capture enrichment. As such, to recover all taxa in a community, the bait design must be optimized to reduce this divergence. The priority is thus to design baits using a reference database that is exhaustive. While reference DNA barcodes are available for most species for some groups, this is far from being the case for many groups (e.g. (Sonet et al., 2013)). Knowing the divergence threshold of 15% (this study) over which species are not captured and detected, alternative strategies could be deployed to barcode key missing taxa in the reference databases. Indeed, a very limited set of baits is sufficient to represent a whole family or a genus (Mariac et al., 2018) if the intra-group genetic diversity is lower than the divergence threshold. This diversity is heterogeneous between taxa group, for example the maximum intra-family COI divergence in Gammaridea (Amphipoda) is 30% but is only 17% in Chloroperlidae (Plecoptera). Therefore, prior investigations are needed to establish the diversity of each group and the number of taxa that have to be described before a robust set of baits can be designed. Another alternative would be to design baits from a set of representative COI sequences and mutate them according to a given divergence to obtain a set of baits that can hybridize to most of sequences. Such baits would permit to capture non-barcoded or even new species but could also reduce capture specificity by capturing untargeted sequences such as bacteria genes or NUMTs.

CONCLUSION

Capture enrichment is a robust alternative to PCR enrichment for metabarcoding. Its main advantage is to provide better species detection thanks to its robustness to mismatches. At this point, while performing much better than PCR enrichment, absolute biomass reconstruction is not applicable.
without species mitogenome copy number correction and is therefore not tractable for community
studies where hundreds of species can be encountered. Yet, biomass rank ordination appears to be
robust and could be used for ecological purpose. Albeit more bacterial contamination, the use of
etDNA coupled to capture enrichment presents interesting compromises. It saves a lot of time by
ignoring the organism picking step and permits to save organisms for further analyses. However,
etDNA should be used for studies where quantitative information is not required. Finally,
standardization of the capture method is important for a large application in biodiversity studies.
Efforts have to be put to standardize lab protocols, in particular hybridization temperature, and more
importantly on bait design which is instrumental for the specificity and efficiency of the method.

ACKNOWLEDGEMENTS

We thank Maxence Forcellini, Bertrand Launay and Guillaume Le Goff for morphological
macrozoobenthos identification and fieldwork assistance. We thank Clémentine François and Florian
Leese for advices and assistance in bioinformatic analysis and bait design. This study was supported
by the French Biodiversity Agency (AFB) “Grant 26: headwater biodiversity dynamics: a molecular
perspective”, and the CNRS Mission pour les Initiatives Transverses et Interdisciplinaires (project
XLIFE CAPTAS).

REFERENCES

Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome
Biology, 12, R18. doi:10.1186/gb-2011-12-2-r18

Sampling and Processing Aquatic and Terrestrial Invertebrates in Wetlands. In Wetland

DATA ACCESSIBILITY

Additional reference sequences developed for bait design are available on Genbank (Accession Numbers MK584300:MK584515 for the 216 seq). COI and 16S sequences barcoded for the 10 species MC assignment are available on GenBank (Accession Numbers MK584516:MK584524 for COI and MK584525:MK584534 for 16S). The bait set designed for this study is available on Zenodo (Zenodo https://doi.org/10.5281/zenodo.2581410). FASTQ files from PCR and capture enrichment are available on NCBI (Accession Number XXXXX). Scripts for bioinformatic analysis are available on GitHub (https://github.com/mailysgauthier/bioinf-cap-PCR).

AUTHOR CONTRIBUTIONS

Samples of the 10 species MC were collected by MG. Methodology design was conceived by MG, TL, CD, VE and TD. Laboratory work was conducted by MG, LKD, AN. Data analysis was conducted by MG, TL and VE. MG and TL led the writing of the manuscript. All authors contributed to write the manuscript.
Table 1. Dry biomass in mg and number of individuals (italic) of freshwater invertebrate species in the 10 species mock communities.

<table>
<thead>
<tr>
<th>Species</th>
<th>Mock community</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Chironomus riparius</td>
<td>1.84 (5)</td>
</tr>
<tr>
<td>Epeorus assimilis</td>
<td>102.32 (5)</td>
</tr>
<tr>
<td>Heptagenia sulphurea</td>
<td>15.73 (5)</td>
</tr>
<tr>
<td>Isoperla rivulorum</td>
<td>37.97 (5)</td>
</tr>
<tr>
<td>Nemurella picteti</td>
<td>2.83 (5)</td>
</tr>
<tr>
<td>Hydropsyche siltalai</td>
<td>68.42 (5)</td>
</tr>
<tr>
<td>Athripsodes aterrimus</td>
<td>6.10 (6)</td>
</tr>
<tr>
<td>Physella acuta</td>
<td>23.30 (5)</td>
</tr>
<tr>
<td>Ancylus fluviatilis</td>
<td>13.42 (5)</td>
</tr>
<tr>
<td>Gammarus fossarum</td>
<td>23.07 (5)</td>
</tr>
</tbody>
</table>
Table 2. Assessment of COI PCR and capture enrichment specificity on two types of DNA templates. "% of COI reads": percentage of reads that align to the COI protein reference database, "% of COI reads assigned to a MC species": percentage of the number of reads that were successfully assigned to a species using the COI nucleotide reference databases to the COI assigned reads and "% of non-protostomian reads": percentage of reads that align to non-protostomian groups. Indicated values are mean number and standard deviation. For sample values, see Table S4 (PCR enrichment) and Table S5 (Capture enrichment). 10 sps: 10 species MC; 52 taxa:52 taxa MC.

<table>
<thead>
<tr>
<th>DNA Type</th>
<th>Mock community</th>
<th>Raw reads</th>
<th>Quality filtered reads</th>
<th>% COI reads</th>
<th>% of COI reads assigned to a MC species</th>
<th>% of non-protostomian reads (contaminants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR enrichment</td>
<td>10 sps</td>
<td>170,026 ± 40,272</td>
<td>114,701 ± 31,160</td>
<td>49.54 ± 4.83</td>
<td>96.01 ± 3.24</td>
<td>2.77 ± 1.30</td>
</tr>
<tr>
<td></td>
<td>52 taxa</td>
<td>135,168 ± 40,871</td>
<td>91,935 ± 32,720</td>
<td>42.33 ± 4.61</td>
<td>96.55 ± 3.80</td>
<td>2.37 ± 1.36</td>
</tr>
<tr>
<td>Capture enrichment</td>
<td>10 sps</td>
<td>493,967 ± 288,240</td>
<td>243,483 ± 86,526</td>
<td>25.16 ± 18.81</td>
<td>61.17 ± 5.55</td>
<td>10.73 ± 3.78</td>
</tr>
<tr>
<td></td>
<td>52 taxa</td>
<td>553,825 ± 165,868</td>
<td>264,694 ± 75,864</td>
<td>69.30 ± 6.51</td>
<td>63.27 ± 1.96</td>
<td>5.31 ± 1.70</td>
</tr>
<tr>
<td>Enrichment-free</td>
<td>10 sps</td>
<td>921,863 ± 68,162</td>
<td>574,443 ± 43,547</td>
<td>0.023 ± 0.028</td>
<td>26.14 ± 9.21</td>
<td>31.66 ± 1.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DNA Type</th>
<th>Mock community</th>
<th>Raw reads</th>
<th>Quality filtered reads</th>
<th>% COI reads</th>
<th>% of COI reads assigned to a MC species</th>
<th>% of non-protostomian reads (contaminants)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR enrichment</td>
<td>10 sps</td>
<td>283,644 ± 52,944</td>
<td>233,856 ± 43,256</td>
<td>62.97 ± 4.47</td>
<td>46.36 ± 11.47</td>
<td>18.61 ± 12.78</td>
</tr>
<tr>
<td></td>
<td>52 sps</td>
<td>517,202 ± 234,942</td>
<td>309,637 ± 147,304</td>
<td>19.09 ± 5.82</td>
<td>33.71 ± 10.96</td>
<td>56.81 ± 10.17</td>
</tr>
</tbody>
</table>
Table 3. Testing the link between read proportion (dependant variable) and initial biomass proportion. Only relative ΔAIC to the best model are shown. Models with and without fixed effect (biomass proportion) and two random effects (species and sample) were built. For each random effect, three models were built: no random effect, random intercept and random intercept and slope. Best models correspond to the models with relative ΔAIC of 0. Ø means that the model could not be tested.

<table>
<thead>
<tr>
<th>bulk DNA</th>
<th>Fixed effect</th>
<th>Random effect</th>
<th>None</th>
<th>Intercept</th>
<th>Intercept + slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR enrichment</td>
<td>1</td>
<td>Species</td>
<td>2,012,800</td>
<td>31,216</td>
<td>Ø</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample</td>
<td>2,012,802</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>biomass proportion</td>
<td>Species</td>
<td>537,148</td>
<td>6,674</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample</td>
<td>496,237</td>
<td>382,656</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Species</td>
<td>320,984</td>
<td>9,223</td>
<td>Ø</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample</td>
<td>320,986</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>biomass proportion</td>
<td>Species</td>
<td>185,777</td>
<td>5,154</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample</td>
<td>185,322</td>
<td>182,666</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>etDNA</th>
<th>Fixed effect</th>
<th>Random effect</th>
<th>None</th>
<th>Intercept</th>
<th>Intercept + slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR enrichment</td>
<td>1</td>
<td>Species</td>
<td>2,602,013</td>
<td>121,099</td>
<td>Ø</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample</td>
<td>2,602,015</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>biomass proportion</td>
<td>Species</td>
<td>1,897,689</td>
<td>97,590</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample</td>
<td>1,894,974</td>
<td>1,748,461</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Species</td>
<td>195,670</td>
<td>43,136</td>
<td>Ø</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample</td>
<td>195,672</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>biomass proportion</td>
<td>Species</td>
<td>166,761</td>
<td>26,717</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sample</td>
<td>166,760</td>
<td>102,699</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Taxa recovery performance assessed using read proportion for PCR (left) and capture (right) enrichment and for bulk (top) and ethanol (bottom) DNA on the 10 species mock community. Sequence abundances are shown for each taxa (in rows) and mock community (in column). A crossed out cell indicates no assigned read. For detailed read counts, see Table S6.
Figure 2: Taxa recovery performance using read proportion for PCR (left) and capture (right) enrichment on the 52 taxa mock communities of Elbrecht and Leese (2015). Sequence abundances are shown for each taxa (in rows) and mock community (in column). A crossed out case indicates that no sequence was assigned to a given taxa in a given mock community. For detailed read counts, see Table S7.
Figure 3: Relationship between biomass proportion and read proportion for PCR (left) and capture (right) enrichment method. Logistic mixed model predictions with random intercept and slope by species are shown (solid line). The dashed red line corresponds to the expected linear relationship where one unit of read proportion equals to one unit of biomass proportion.
Figure 4: Hierarchical clustering based on the species occurrence of 10 samples (1 to 10) analysed using two different DNA templates (etDNA and bulk DNA) and three enrichment methods (BF2/BR2 amplicon, Fwl amplicon and capture). The clustering was made using Jaccard distances and the Ward algorithm. etDNA1 and etDNA2 correspond to the first and second extraction of DNA from ethanol, respectively.