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Figure 7. Canonical variate analysis of the shape variables based on female medigynia of Dicerapanorpa magna, D.
minshana, D. hualongshana, D. baiyunshana and D. shennongensis. A, scatter plots of canonical variates CV1 vs. CV2 are
shown for different species. B, shape variations along CV1 and CV2 illustrated by deformation grid graphs.
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Figure 8. Majority consensus tree obtained via Bayesian inference for Dicerapanorpa spp. based on the concatenated
COI, COII, cytb and 28S rRNA dataset. Posterior probabilities are shown on the nodes. Morphological species are uniquely
coloured.
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Figure 9. Maximum likelihood tree for Dicerapanorpa spp. based on the concatenated dataset of COI, COII, cytb and 28S
rRNA. Bootstrap values are shown on the nodes.
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lateral longitudinal stripes. Antenna blackish brown
(Figs 10, 11A, B).

Thorax: Pronotum yellow, with long black setae along
anterior margin and a black longitudinal stripe along
each side. Meso- and metanotum yellow, with two
black longitudinal stripes laterally. Pleura yellow.
Legs cream coloured, with tarsomeres blackish
(Figs 10, 11A, B).

Wings: Male holotype: forewing length 14.6 mm, width
3.7 mm; hindwing length 13.9 mm, width 3.5 mm;
wing membrane hyaline, without distinct markings

(Fig. 11A). Female: forewing length 15.4-16.6 mm,
width 3.8—4.1 mm; hindwing length 14.2-15.2 mm,
width 3.8-4.1 mm; similar to male in general
appearance (Figs 10B, 11B).

Abdomen: Terga I-V (T1-T5) yellowish, with two
black longitudinal lateral stripes; sterna and pleura
yellow (Figs 10, 11). Male: notal organ of T3 slightly
prominent, bearing black setae posteriorly (Fig. 4D); T6
yellowish brown, with a pair of anal horns on posterior
margin (Figs 3D, 11A); abdominal segments VII and
IIT (A7-AS8) brownish yellow, elongate, constricted at
basal half and thickened at apical half, but A8 much

Figure 10. Habitus of Dicerapanorpa lativalva: A, male; B, female.

Figure 11. Dicerapanorpa lativalva: A, male holotype, dorsal view; B, female paratype, dorsal view; C, D, male genital
bulb, dorsal and ventral views, respectively; E, female subgenital plate, ventral view; F, female medigynium, ventral view.
Abbreviations: ae, aedeagus; ax, axis; bb, basal branch; bp, basal process; ep, epandrium; gex, gonocoxite; gs, gonostylus; hv,
hypovalve; Ib, lateral branch; mb, mesal branch; mp, main plate; mt, median tooth; pa, posterior arm; sgp, subgenital plate.

Scale bars: 5.0 mm (A, B); 0.5 mm (C, D); 0.1 mm (E, F).
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Figure 12. Dicerapanorpa hualongshana: A, male holotype, dorsal view; B, female paratype, dorsal view; C, D, male genital
bulb, dorsal and ventral views, respectively; E, female subgenital plate, ventral view; F, female medigynium, ventral view.
Abbreviations: ae, aedeagus; ax, axis; bb, basal branch; bp, basal process; ep, epandrium; gcx, gonocoxite; gs, gonostylus; hv,
hypovalve; lb, lateral branch; mb, mesal branch; mp, main plate; mt, median tooth; pa, posterior arm; sgp, subgenital plate.
Scale bars: 5.0 mm (A, B); 0.5 mm (C, D); 0.1 mm (E, F).

Figure 13. Scanning electron micrographs of male (A-C) and female genitalia (D—G) of Dicerapanorpa hualongshana: A,
male genital bulb, with hypandrium removed, ventral view; B, magnification of A to show the male aedeagus, ventral view;
C, right hypovalve, ventral view; D, E, female subgenital plate; F, G, medigynium. Scale bars: 0.2 mm.
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MOLECULAR PHYLOGENY OF DICERAPANORPA 17

exceeding apex of ventral valve. Ventral valves of
aedeagus long, slender; dorsal valves sclerotized, not
reaching apex of gonocoxite (Fig. 12D).

Female genitalia: Subgenital plate ovoid, terminating
in a ligulate process, covered with long bristles
caudally (Fig. 12E). Main plate of female medigynium
broad, nearly rectangular (Fig. 12F). Posterior arms
shorter than main plate. Axis concealed in main plate,
slightly protruding beyond main plate at apex.

Remarks

Different individuals of this species exhibit variations
in male aedeagus, paramere (Figs 4M, 13A, B), female
subgenital plate (Fig. 13D, E) and medigynium (Figs 6N,
13F, G).

DICERAPANORPA MINSHANA HU & HUA SP. NOV.

(F1Gs 3L, 4L, 5L, 6L, M, 14, 15)

Isid:zoobank.org:act:BOFO1DAE-2C1F-473E-B324-
862C92D1D86A

Type material

Holotype: CHINA: &, Laohegou Nature Reserve
(32.47°N, 104.73°E), Minshan Mountain, 1800 m,
Pingwu County, Sichuan, 6 May 2013, leg. Shuang Xue.

Paratypes: Thirteen &, three @, same data as holotype;
13 4,16 9, same locality as holotype, 28 May 2018, leg.
Kai Gao.

Etymology

The specific epithet refers to the type locality, Minshan
Mountain.

Diagnosis

This new species can be differentiated readily from
D. magna by the following characters: (1) male genital
bulb spherical (cf. long and elliptical); (2) basal branch
of male paramere short, hook-shaped (cf. relatively
long); and (3) main plate of female medigynium nearly
rectangular distally, constricted mesally and smoothly
curved basally (cf. subtriangular or constricted rapidly
at base).

Description

Head: Head yellow. Vertex yellowish. Ocellar
triangle black. Antenna blackish brown. Rostrum
yellowish, without black lateral longitudinal stripes
(Fig. 14A, B).

Thorax: Pro-, meso- and metanotum yellow, bearing
several setae anteriorly and two black longitudinal
stripes laterally. Pleura light yellow. Legs yellowish
brown, with tarsomeres gradually darkened toward
apex (Fig. 14A, B).

Wings: Male holotype: forewing length 16.5 mm, width
4.5 mm, yellowish, apical band reduced; pterostigma
band incomplete and dark brown, with reduced basal
and distal branches; basal band extending from vein
R, to CuP, other markings indistinct; hindwing length
15.2 mm, width 4.3 mm, similar to forewing, but
with more degenerated markings (Fig. 14A). Female:
forewing length 15.5-17.6 mm, width 4.1-4.9 mm;
hindwing length 14.1-16.4 mm, width 4.0-4.7 mm;
similar to male in general appearance (Fig. 14B).

Abdomen: T1-T5 yellowish, with two black lateral
longitudinal stripes (Fig. 14A, B). Male: notal organ
developed, covered with numerous black setae
posteriorly (Fig. 4L); T6 brownish yellow, bearing a
pair of digitate anal horns posteriorly (Figs 3L, 14A);
A7 and A8 yellowish brown, elongate, constricted
at basal half and dilated at distal half, but A8 much
thinner than A7 distally (Fig. 14A). Female: abdominal
segments gradually narrowed caudally (Fig. 14B).

Male genitalia: Genital bulb brownish yellow,
spherical. Epandrium gradually narrowing toward
apex, with a rounded, U-shaped terminal emargination
(Fig. 14C). Hypovalve slender, bearing long bristles
along inner margin, nearly reaching apex of gonocoxite
(Figs 5L, 14D). Gonostylus shorter than gonocoxite,
with a well-developed trapezoidal basal process and
a small sharp subtriangular median tooth. Parameres
trifurcate: basal branch considerably short, hook-
shaped; mesal and lateral branches curved inward,
reaching or exceeding apex of gonocoxite. Ventral
valves of aedeagus short; dorsal valves broadened and
elongate, nearly reaching apex of gonocoxite (Figs 5L,
14D, 15A, B).

Female genitalia: Subgenital plate ovoid, terminating
in a ligulate process, covered with long setae caudally
(Figs 14E, 15C). Medigynium strongly sclerotized, with
main plate rectangular distally, gradually constricted
mesally and rounded basally. Posterior arms parallel
and short, approximately half the length of main plate
(Figs 6L, M, 14F).

DISCUSSION

Owing to highly intraspecific variations and
interspecific similarities, species delimitation of
Dicerapanorpa has been challenging. By integrating
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18 G.-L.HUETAL.

Figure 14. Dicerapanorpa minshana: A, male holotype, dorsal view; B, female paratype, dorsal view; C, D, male genital
bulb, dorsal and ventral views, respectively; E, female subgenital plate, ventral view; F, female medigynium, ventral view.
Abbreviations: ae, aedeagus; ax, axis; bb, basal branch; bp, basal process; ep, epandrium; gex, gonocoxite; gs, gonostylus; hv,
hypovalve; Ib, lateral branch; mb, mesal branch; mp, main plate; mt, median tooth; pa, posterior arm; sgp, subgenital plate.

Scale bars: 5.0 mm (A, B); 0.5 mm (C, D); 0.1 mm (E, F).

Figure 15. Scanning electron micrographs of male and female genitalia of Dicerapanorpa minshana: A, male genital bulb,
with hypandrium removed, ventral view; B, magnification of A to show the male aedeagus and parameres, ventral view; C,

female genital plate, ventral view. Scale bars: 0.2 mm.

molecular, morphological, geometric morphometric
and phylogenetic analyses, this study confirmed the 13
species of Dicerapanorpa and revealed the existence
of three formerly overlooked new species (D. lativalva,
D. hualongshana and D. minshana), considerably

deepening our understanding of species limits and
boundaries in Dicerapanorpa.

Molecular approaches to species delimitation have
developed rapidly in recent decades, and several
methods are now available to infer species boundaries

© 2019 The Linnean Society of London, Zoological Journal of the Linnean Society, 2019, XX, 1-23
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MOLECULAR PHYLOGENY OF DICERAPANORPA 19

(Dellicour & Flot, 2015). Our present study initially
used the BIN system in BOLD to assign individuals to
presumptive species, and subsequently applied three
other delimitation methods (ABGD, GMYC bPTP). BIN
unexpectedly grouped all samples of the five species
in the D. magna group (clade IV in Fig. 2) together,
which might result from the large geographical scale
of sampling, as reported by Bergsten et al. (2012). The
GMYC approach, especially the multiple-threshold
model, greatly inflated the species count (30 OTUs),
a result seen earlier in spiders (Satler et al., 2013;
Hedin, 2015). In contrast, bPTP produced a relatively
conservative species count (18 OTUs) and was
considered to outperform the GMYC model in both
simulation and empirical studies (Zhang et al., 2013;
Hedin, 2015). The ABGD method was previously
considered to perform poorly in delimiting species
when sample sizes are low (fewer than five; Puillandre
et al., 2012b), but performed well in our study. These
four methods are complementary, and effectively
contribute to the final molecular OTUs.

The phylogenetic trees (Figs 8, 9) clearly indicate
that the genus Dicerapanorpa is a monophyletic group,
consistent with previous conclusions (Ma et al., 2012;
Hu et al., 2015; Miao et al., 2019). Clades I-III belong
to the D. diceras group, and clade IV belongs to the
D. magna group, showing the paraphyletic relationship
of the D. diceras group with respect to the D. magna
group. This might also suggest that the hyaline wings
and the rostrum with two black longitudinal stripes
in the D. diceras group are plesiomorphic characters,
whereas the yellowish wings with distinct markings
and the rostrum without stripes in the D. magna group
are apomorphic characters.

Reciprocal monophyly is often viewed as the most
important criterion for species delimitation (de Queiroz,
2007), but it is often not evident in recently diverged
species (Knowles & Carstens, 2007; Cummings et al.,
2008). The phylogenetic trees (Figs 8, 9) in the present
four-gene dataset reveal that some species are not
monophyletic. For example, D. shennongensis is
paraphyletic with D. baiyunshana, and D. yijunae is
paraphyletic with D. kimminsi. The potential reason
for this phenomenon might be hybridization followed
by introgression, incomplete lineage sorting and recent
evolutionary divergence, as explained in previous
studies (Funk & Omland, 2003; Knowles & Carstens,
2007; Degnan & Rosenberg, 2009). New species start
from initial polyphyly and achieve monophyly through
paraphyly in the speciation process (Avise, 2000).
The progress may be more rapid for mitochondrial
haplotypes and can be distinctive in the case of
budding speciation through peripheral isolation (Frey,
1993). Ancestral (e.g. D. shennongensis) and budding
species (e.g. D. baiyunshana) will remain paraphyletic
until the ancestral species has lost the characteristics

of the budding species (Podani, 2013; Kaya & Ciplak,
2016). Mitochondrial genes play a dominant role in
the phylogenetic reconstruction, probably leading to
discordance between the phylogenetic topology and
species tree. Even so, the mitochondrial genetic data,
as a source of complementation to other evidence for
species delimitation, do provide valuable information
for investigating evolutionary histories and patterns
of species diversity (Avise, 2009; Monaghan et al.,
2009; Fujisawa & Barraclough, 2013).

Male genitalia are remarkably useful morphological
traits for species discrimination (Song & Bucheli,
2010). Numerous taxa of insects have evolved species-
specific male genitalia, and morphological divergence
of male genitalia among closely related species is
often dramatic (Eberhard, 1985). For example, body
coloration and wing pattern are relatively conserved in
Dicerapanorpa, whereas genital shape and complexity
exhibit a greater divergence, as also seen in water
striders (Eberhard, 2010; Rowe & Arnqvist, 2012). The
paramere of male genitalia is the most phenotypically
differentiated structure in Dicerapanorpa, with
variation of its shape and length distinguishing closely
related species, especially in the D. magna group (Fig.
5L—P). The rapid evolution and divergence of this trait
have probably been driven by sexual selection through
facilitating male domination and success in the process
of copulation (Hosken & Stockley, 2004; Simmons,
2014). The male genital structures in scorpionflies,
such as the gonostylus, hypovalve and epandrium, in
addition to the anal horn and notal organ, have been
shown to function in countering the female resistance
and stabilizing the mating position (Ma et al., 2010;
Zhong & Hua, 2013b; Zhong et al., 2015).

In contrast, female genital structures have been
little studied by taxonomists, mainly because they are
generally internal and require dissection (Simmons,
2014). The medigynium, an important component
of female genitalia, was previously considered as
possessing taxonomic value in scorpionflies (Byers,
1954; Cheng, 1957). Ma et al. (2012) concluded that
the medigynium is a reliable character for species
delimitation in the Panorpidae at generic or higher
levels. The present study corroborates that most
Dicerapanorpa species have a morphologically
distinct medigynium, with considerable variation
within some species, such as D. magna (Fig. 60, P)
and D. shennongensis (Fig. 6Q—S). The extensive
morphological variations between and within
populations in Dicerapanorpa are more complicated
than the variation in male genitalia, a situation also
noted in a scarab beetle (Polihronakis, 2009). The
copulatory pore is situated at the posterior end of the
axis of the medigynium in Dicerapanorpa, implying
that the main plate and posterior arms are likely to
be free from functional constraint. This might explain
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20 G.-L.HUETAL.

the extensive variation in the shape and length of the
female medigynium in Dicerapanorpa.

Evidence from multiple characters suggests
that the D. magna group consists of five species,
i.e. D. baiyunshana, D. hualongshana, D. magna,
D. minshana and D. shennongensis. A previous
geometric morphometric study of wings supports the
significant differences between D. hualongshana and
D. magna (Liu et al., 2016). A phylogeographical study
(Hu et al., 2019a) also suggests the presence of three
genetically distinct lineages and incipient speciation
in the D. magna group (i.e. D. hualongshana, D. magna
and D. minshana). Geographical barriers, including
mountains and the Hanshui River between the
Qinling and Bashan Mountains (Su et al., 2015; Liu
et al., 2016), are apparently responsible for limiting
gene flow and promoting divergence among species
in the D. magna group. Pleistocene glaciations could
also have promoted recent divergence associated
with colonization of individual sky islands, as found
in grasshoppers (Knowles, 2001). Owing to divergent
ecological selection, reproductive isolation between
allopatric populations might have evolved. However,
D. hualongshana, D. magna and D. minshana have
probably experienced recurrent range contractions
and expansions during the Pleistocene, leading to
secondary contact between allopatric populations
(Hu et al., 2019a). These species are probably able to
hybridize in the contact zone, because they are unlikely
to exhibit complete reproductive isolation.

Mountain regions, as naturally fragmented habitat
islands, provide opportunities for new species to diversify
and survive (Hewitt, 2000, 2004). Allopatric speciation is
often fostered by geographical barriers within montane
systems owing to natural selection or genetic drift
(Vuilleumier & Monasterio, 1986; Moritz et al., 2000),
leading to the exceptionally high species diversity and
richness in the mountains of southwestern China.
Besides, the climate changes during the Pleistocene
have probably contributed to population differentiation
and speciation processes in Dicerapanorpa (Hu et al.,
2019a). The Dicerapanorpa species considered in
this study are narrow endemics restricted to small
or medium-sized regions on the mountaintops with a
few exceptions in the D. magna group. Some species
of Dicerapanorpa may have experienced convergent
evolution, because they display nearly identical body
and wing coloration, which might result from similar
selective pressure in the mountain sky islands, as noted
in cave-dwelling harvestmen (Derkarabetian et al.,
2010; Derkarabetian & Hedin, 2014). Nevertheless,
the integrative approach has uncovered taxonomic
boundaries in these morphologically conserved species,
such as D. diceras, D. lativalva and D. luojishana, laying
a foundation for future evolutionary and systematic
studies of this group.
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