








Strategy for selecting taxonomic assignment programs 

For each taxonomic assignment category we evaluated two programs based on four criteria: 1)              

Frequency of use, as measured by the average number of citations per year over the last five years                  

(Figure 1); 2) Type of assignment or category (as per Figure 2); 3) Novelty (i.e. programs without                 

prior benchmarking); and 4) Applicability (i.e. programs with active support that are not marker              

specific). We employed two sequence similarity methods, Kraken2 (Wood & Salzberg 2014) and             

Basta (Kahlke & Ralph 2019) ; two sequence composition methods, QIIME q2-feature-classifier           

(Bokulich et al. 2018) and IDtaxa (Murali et al. 2018) ; and one probabilistic method, Protax               

(Somervuo et al. 2016; Axtner et al. 2019) . The two most frequently cited phylogenetic methods               

are TIPP (Nguyen et al. 2014) and MLTreeMap (Stark et al. 2010) , but neither have active                

development or support so were not evaluated. As a phylogenetic method, we chose             

HMMUFOTU (Zheng et al. 2018) because all other implementations (e.g. pplacer, EPA) in this              

category leave taxon assignments to postprocessing after phylogenetic placement. As a baseline            

reference and given that it is still widely used in metabarcoding studies, we also included BLAST                

top hits in the tests. Program descriptions and characteristics are provided in Supplementary             

Table S5. 

  

Optimization of parameters and evaluation of accuracy 

Each program designated for evaluation has a set of adjustable parameters which can affect its               

performance in making taxonomic assignments. We optimized parameter selection for each           

12 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 22, 2020. . https://doi.org/10.1101/2020.07.21.214270doi: bioRxiv preprint 

http://sciwheel.com/work/citation?ids=227534&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6886502&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5393966&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5393966&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5393966&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6291613&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6291613&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6291613&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6347091,6814540&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=6347091,6814540&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=6347091,6814540&pre=&pre=&suf=&suf=&sa=0,0
http://sciwheel.com/work/citation?ids=6454505&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6454505&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=6454505&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=227439&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=227439&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=227439&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5496092&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5496092&pre=&suf=&sa=0
http://sciwheel.com/work/citation?ids=5496092&pre=&suf=&sa=0
https://doi.org/10.1101/2020.07.21.214270
http://creativecommons.org/licenses/by-nc-nd/4.0/


program rather than adopting a one-size-fits-all approach. We did this by creating a linear search               

for each parameter employing the objective criterion of maximizing the Mathews correlation            

coefficient because it incorporates all basic metrics (see Metrics for benchmarking section). This             

selection of the best parameter set was done by performing a grid search with pseudo 3-fold cross                 

validation, where one third of each mock community was selected at random to identify the best                

parameter values, while the final test was performed on the remaining two thirds of the               

community. With this procedure, some degree of overfitting can be accomodated. When multiple             

combinations of parameters yielded the same results, the least stringent parameter set was chosen              

to ensure generalizability of predictions. To test the effect of parameter optimization on accuracy              

of taxonomic assignment, we performed two multiple linear regressions with all the parameters as              

independent variables and the F1-score and Matthews correlation coefficient as response           

variables. With the estimated weights, we predicted the accuracy value for every combination of              

parameters. We then computed R2 between the real and predicted values as a proxy of fit for each                  

one of the training folds (folds being each partition of the data) during cross validation. This R2                 

represents the proportion of the variance predictable from parameter usage, and therefore is a              

useful proxy for the effect of parameter tuning on accuracy. 
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RESULTS 

Accuracy 

We evaluated the Matthews correlation coefficient and F1-score (basic metrics and other            

compound metrics are provided in supplementary table S6) for each method at the family, genus,               

and species level as these are the key taxonomic ranks for ecological studies (Thiault et al. 2015;                 

Wiese et al. 2016) . QIIME2 generated the highest average Mathews correlation coefficient for             

accuracy of classification among the methods tested for each mock community, achieving            

average values of 0.99 (0.02 standard deviation), 0.89 (0.11 standard deviation), and 0.67 (0.09              

standard deviation) for family, genus, and species, respectively (Figure 3 and Supplementary            

Table S6). The loss of accuracy towards the lower taxonomic ranks reflected an increase in the                

false discovery rate (increased false positives) rather than a lack of predictions (false negatives)              

(Supplementary Table S6). This pattern was true for all communities except the insect mock              

community where more false negatives were found but fewer false positives (Figure3 and             

Supplementary Table S6). 

QIIME2 was closely followed by BLAST which had average Mathews correlation coefficient            

values of 0.91 (0.08 standard deviation - SD), 0.83 (0.09 SD), and 0.70 (0.09 SD) for family,                 

genus, and species respectively (Figure 3 and Supplementary Table S6). BLAST did not produce              

false negatives for any mock community and no true negatives were predicted (Supplementary             

Table S6). Loss of accuracy at lower taxonomic levels again resulted from false positives, with               
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the multiple individual per species community having the highest relative incidence of false             

positives (Supplementary Table S6). 

In comparison to QIIME2 and BLAST, Kraken2 generated much lower average Mathews            

correlation coefficient values for family (MCC = 0.56, SD = 0.22), genus (MCC = 0.55, SD =                 

0.23), and species (MCC = 0.45, SD = 0.26) (Supplementary Table S6). Kraken did correctly               

avoid assigning taxonomy to the shuffled sequences, but produced many false negatives,            

especially for the fish community (e.g. it failed to assign Catostomus commersonii and Notropis              

hudsoni to the correct species), and some false positives particularly for the insect community              

(e.g. Dioryctria abietella , Euura clitellata ; Supplementary Table S6). 

The type of mock community did not have a substantial effect on the accuracy of either QIIME or                  

BLAST as both methods had less than 0.1 standard deviation (SD) of the Mathews correlation               

coefficient (with the exception of QIIME in species with 0.12). All other methods showed high               

levels of variation in accuracy (> 0.2 SD except LCA which had a SD of 0.17 at the species-level)                   

depending on the type of mock community. The zooplankton population of single species, and              

the single individual per species mock communities were the least variable and the fish mock               

community the most variable (Supplementary Table S6 and Supplementary figure S2). The            

probabilistic method (Pr) PROTAX, exhibited many false negatives especially for the fish            

community.  

HMMUFOTU always assigned the shuffled sequences to a taxon, leading to no true negatives,              

and therefore rendering the Mathews correlation coefficient undefined (Figure 3). For reference,            
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we provide the same analysis using the F1-score as an accuracy metric in the supplementary               

materials (Supplementary figure S2). As this metric does not consider true negatives, its             

performance is overestimated. Most methods showed similar trends in both the F1-score and the              

Mathews correlation coefficient analyses: QIIME and BLAST performed best while KRAKEN2           

and HMMUFOTU were worst.  

 

Parameter optimization 

Parameter optimization played an important role in accuracy of taxonomic assignments (Figure 4;             

supplementary tables S7-S13) for most methods. However, our results suggest that Kraken2 was             

the most affected (Figure 4) as evidenced by its higher overall R2 over multiple linear regressions                

with all the parameters as independent variables and the F1-score and Matthews correlation             

coefficient as response variables. Kraken2 showed an average R2 of 0.74 meaning that 74% of its                

variance is explained by parameter tuning. By contrast, the PROTAX (probabilistic method)            

confidence (conf) parameter had no influence on the predicted composition of any mock             

community regardless of parameter tuning (Figure 4 and supplementary table S11). A similar             

pattern was found for HMMUFOTU (phylogenetic method) with an average R2 of 0.05. However,              

there seemed to be a correlation with the type of mock community as the zooplankton single                

individual per species (for the Mathews correlation coefficient metric; Figure 4) responded best to              

optimization. 
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The most parameterized method is BASTA’s last common ancestor-type software with five            

tunable parameters with 5 -11 levels for each (Supplementary Table S6). This requires an              

optimization run for more than 23,000 combinations of parameters. As a result, BASTA took the               

longest (>40 hours of compute time) to provide optimization results, despite being one of the               

fastest methods for single runs (Figure 5 and Supplementary Table S6). In terms of response to                

optimization, BASTA exhibited an average R2 of 0.25 (i.e. 25% of variance reflects parameter              

tuning; Tables S8a to S8e). It appears to be community dependent (Figure 4) as tuning had a                 

more profound effect on the population of a single species community with an R2 of 0.57. 

 

PROTAX, IDtaxa, and Kraken2 are the least parameterized methods with only one tunable             

parameter (Table 2), which translates into a smaller search space for the optimum value, and               

therefore potentially less time to determine the optimal solution. PROTAX however, did not             

respond to optimization as it showed similar Mathews correlation coefficient values for all levels              

of the tunable parameter (confidence threshold in this case; Table 2). The variance in accuracy for                

IDtaxa and Kraken2 could be explained by parameter optimization. Both programs might deliver             

improved accuracy when detailed parameter tuning is applied as they currently rely on just a               

single parameter. 

 

Overall performance 

Kraken2 was the most time-efficient method, being several orders of magnitude faster than the              

other methods evaluated, reaching results in 0.5 sec on average (Figure 5A and Supplementary              
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Table S6). BLAST and BASTA were slightly higher, generating results in 5.8 and 7.3 seconds               

averaged across the three mock communities. By contrast, IDtaxa and QIIME were almost three              

orders of magnitude slower than Kraken2, with 129.4 and 99.6 seconds on average across mock               

communities, respectively (Figure 5A and Supplementary Table S6).  

In terms of memory, all programs had roughly similar requirements, but PROTAX and BLAST              

were the most memory intensive using an average of 6648 and 4054 megabytes of memory,               

respectively (Figure 5B and Supplementary Table S6) while QIIME required the least (924.3 Mb;              

Figure 5B and Supplementary Table S6) during the classification phase. 

Another performance metric was CPU usage, the proportion of a single core used to execute the                

program. As most computers now contain multiple CPU cores, the percentage of usage can be               

higher than 100%. CPU usage differed substantially among mock communities, largely reflecting            

their varying number of sequences (Figure 5C). PROTAX and BLAST showed consistently high             

CPU usage, with 1414.8 and 784.3 average CPU percentage, respectively (Figure 5C and             

Supplementary Table S). On average, QIIME was the most CPU efficient software, using only              

6% CPU on average. 

 

DISCUSSION 

In this study we comprehensively assessed the performance of current taxonomic assignment            

software. It is often assumed that more sophisticated methods outperform BLAST in performance             
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and accuracy of taxonomic assignments in almost every setting, adding to reports of false              

positives (Virgilio et al. 2010; Porter & Hajibabaei 2018) . However, our results suggest that              

added complexity does not always yield significantly better results, especially if a mock             

community resembling the expected sample can be used for parameter adjustment. 

Classification Accuracy 

Naive Bayes classifiers have been shown to outperform BLAST in certain settings (Rosen et al.               

2011) but we only found this to be true for QIIME, suggesting that other classifiers are extremely                 

sensitive to the reference database available, especially with respect to composition and the             

number of reference sequences per species (Schenekar et al. 2020) . Although QIIME slightly             

outperformed BLAST, sequence similarity (SS) methods seemed more robust for highly           

heterogeneous and large databases. Both BASTA and Kraken2 use the last taxonomic common             

ancestor (LCA) strategy to assign taxonomy, and their performance might be underestimated in             

this study, since we tested each taxonomic level strictly. This means that even if these methods                

correctly identified a higher taxonomic level, it would be reported as a misclassification for the               

ranks evaluated. This reflects the heterogeneity in LCA predictions (i.e. not all taxonomic levels              

are classified to the same depth). If a study does not require strict taxonomic levels (i.e. species                 

level prediction is not required in all assignments) then LCA methods might deliver higher              

accuracies than reported here. In fact, a LCA approach can be very appropriate when some taxa                

are undersampled, e.g. in exploratory analyses of diversity or environmental DNA studies. In             

such cases, the sensitivity of LCA approaches might reveal the presence of undersampled or rare               
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species (e.g tropics; Bacci et al. 2018) at higher taxonomic levels (e.g. family) when a genus or                 

species identification is not possible  

In our analysis, PROTAX exhibited low accuracy when making assignments for the fish mock              

community. This result might reflect the presence of records from hybrids or from misidentified              

specimens in the reference database as these would confound the regression classifier. It is certain               

that sequences derived from hybrids are present in reference databases such as the NCBI, and               

their annotation is extremely variable, making them likely to be present in most reference              

databases that have not been manually curated. Also, if the parental species of hybrids are used to                 

identify species, the database might contain biases even after curation (Machida et al. 2017) and               

so will the classifier. This is an important factor to consider when dealing with taxonomic groups                

with high levels of hybridization such as fish. Taxonomic assignment in these cases should be               

inspected carefully and only highly curated databases should be used. However, introgression            

will affect the accuracy to the species level by increasing false positives, but might not affect                

other taxonomic ranks since introgression is rare above a genus level. Our results also revealed a                

high level of false negatives, likely reflecting the lack of enough reference sequences in each               

taxon. PROTAX requires at least two sequences of each taxon to model probabilities. Some of               

our reference databases only had one representative of certain species. This should not affect the               

genus or family level, but we observed instances where the genus and family were not assigned,                

although the reference database included multiple entries for congeners and confamilials. 
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PROTAX does have the advantage of informing the classifier of the likelihood of finding a given                

group (Axtner et al. 2019) , e.g. if a species is present in the region under study. We did not test                    

this feature since this information is rarely available for metabarcoding or ecological studies in              

understudied areas (e.g,. tropics) or taxonomic groups. We also deemed it not appropriate for a               

mock community study in order to avoid “observer” bias in already biased reference sets              

(Troudet et al. 2017) . However, when prior information concerning expected diversity is            

available, PROTAX might have a better performance than achieved in our study.  

Our results indicate that sample composition strongly affects the capacity of classifiers to make              

correct taxonomic assignments, an observation also reported in microbial metabarcoding (Yeoh           

et al. 2019) . At the species level, accuracy across all methods for the multiple individuals per                

species mock community was low, perhaps due to confounding stemming from its higher genetic              

diversity per species (Supplementary Figure S2). This is important as most metabarcoding bulk             

samples are taxonomically heterogeneous and genetically diverse (Evans et al.  2017) . 

A high number of hybrids in databases, the relative low taxonomic diversity in public              

repositories, and a dynamic taxonomy (Mora et al. 2008; Vavalidis et al. 2019) perturb              

classification, and create high uncertainty of results (Supplementary Figure S2). This exemplifies            

the main sources of error in taxonomic assignment: mis-annotations in reference databases and             

the incomplete representation of taxa in them (Troudet et al. 2017; Leray et al. 2018;               

Macheriotou et al. 2019) . 
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Classification parameter optimization 

Although it is intuitive that parameter optimization should improve the accuracy of predictions             

(Bokulich et al. 2018) , many studies employ previously published or default parameters (e.g.             

Anantharaman et al. 2016; Rodríguez-Martínez et al. 2020) , thereby potentially propagating           

errors. Our data show that the accuracy of most methods is strongly influenced by parameter               

optimization, particularly in Kraken2, IDtaxa, and BASTA. The assembly of a mock community             

closely resembling the expected sample followed by parameter tuning before making taxonomic            

assignments could yield a more accurate description of the community by reducing false positives              

and false negatives (Zhang et al.  2018b; Braukmann et al. 2019) . 

 

PROTAX was the sole method that showed no response to parameter tuning. This lack of               

relationship might be explained by the robust parametrization of the multinomial model, where             

the probability values lie outside the bounds of the tested thresholds. This strength becomes very               

important when no ground truthing is available for samples. 

Classification performance 

During the classification of the mock communities, all methods completed analysis rapidly (39 ±              

112 seconds). Kraken2 was most rapid reflecting its optimization for data heavy metagenomic             

studies (Wood et al. 2019) . BLAST-based methods (BLAST top hit and BASTA LCA) were              

more efficient than the SC methods, but BLAST scales poorly (Porter & Hajibabaei 2018) . The               

three methods based on sequence composition (Idtaxa, QIIME) are least scalable, followed by             
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PROTAX. This implies that parameter optimization should be restricted to a smaller set, which              

comes with the caveat that the optimum might not be found in a realistic timeframe.  

 

Run times gain importance as reference databases and query sets grow, especially with parameter              

optimization. Some methods lack an off-the-shelf way to parallelize a run. For example, the LCA               

implementation (BASTA; Kahlke & Ralph 2019) involves a database that cannot be concurrently             

accessed, making BASTA single threaded (one query at a time). Despite this limitation, it ran               

rapidly, but parameter optimization is costly because of the lack of parallelization and number of               

parameters that can be tuned. 

 

All programs had similar memory requirements (Figure 5B) except BLAST and PROTAX, which             

both required one more order of magnitude of memory during classification. PROTAX memory             

consumption remained high regardless of the size of the mock community or the number of               

reference sequences. Memory use in BLAST varied strongly with both factors, especially the             

number of reference sequences. A similar pattern was observed for CPU usage as PROTAX and               

BLAST required more than the other methods (between one and four orders of magnitude). This               

metric is important when multiple instances of programs are being run on a CPU, as this affects                 

the run time of all active software. QIIME seems to be CPU-load independent which suggests               

that multiple instances of it can be run on the same CPU with little impact on individual run                  

times. 
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Training stage 

So far we have only considered performance metrics at the classification stage. However, the              

performance during the training phase can also be a limiting factor. Sequence similarity programs              

are very fast during database creation and can process several million sequences (i.e. NCBI nt               

database) within a few minutes. By comparison, sequence composition programs are           

computationally expensive, with IDtaxa being the most extreme in this regard. During this study,              

QIIME required more than 500 Gb of RAM for 2+ days for our training set, while IDtaxa needed                  

similar memory for 3+ days. These constraints can be overcome by using pre-trained references              

(e.g SILVA, GREENGENES), or smaller custom references. This comes at the potential cost of              

not discovering certain taxa and creating more false positives from a prediction of a confamilial               

instead of the target species. A possible strategy to deal with large reference databases is to first                 

run BLAST/LCA methods on a higher taxonomic rank, assign the references to the identified              

families, and then create family-specific reference databases. However, even this approach can            

fail in extremely diverse families, and further subsets might be required.  

 

Both phylogenetic and probabilistic (at least PROTAX) software also use extensive           

computational resources at the training phase. In addition, both require a global sequence             

alignment, and most alignment programs cannot deal with more than a few thousand sequences              

(Sievers et al., 2011). Alternative strategies to improve input alignment quality include anchoring             

the alignment to a particular region of the gene (e.g. COI) and to the amplicon within that gene                  

(Hleap et al. 2020) . What remains for both PROTAX and HMMUFOTU is an extensive              
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training/tree building step after alignment that can be time and memory consuming. For             

HMMUFOTU, the computational impact is lower because of efficient phylogenetic software,           

such as FastTree (Price et al. 2010) . However, these methods are less accurate in determining               

phylogenetic relationships and can therefore compromise downstream taxonomic assignments         

(Zhou et al. 2018) . It is possible that the uncertainty introduced during the estimation of a very                 

large phylogenetic tree with a fast heuristic such as the one used in FastTree is one reason why                  

HMMUFOTU performed poorly in our study. 

 

Following Gardner et al (2019) , we have reported the most used accuracy metrics to aid future                

benchmarking, and made a neutral comparison (Boulesteix et al. 2013) . Furthermore, of other             

neutral benchmarking studies (Bazinet & Cummings 2012; Lindgreen et al. 2016; Siegwald et al.              

2017; Almeida et al. 2018; Gardner et al. 2019) , ours is the only one to include manually curated                  

real mock communities, and the addition of true negatives through sequence shuffling. To our              

knowledge, this is also the only neutral benchmark for amplicon sequencing in eukaryotes and it               

includes the largest real mock community to date, providing insights into the effect that query and                

reference sequence heterogeneity has on taxonomic assignments. 

 

CONCLUSIONS 

Despite intensive research, and incremental improvements in software, the taxonomic assignment           

of sequence data remains challenging. As global biodiversity is under threat, it is important to               
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gain the capacity to accurately determine alpha diversity. We show that for higher taxonomic              

ranks (e.g. family) current methods have roughly similar capacity to generate accurate            

predictions, but there is significant room for improvement at the genus and species levels.              

Achieving “exact” assignments is impossible at the species level because taxonomy is volatile,             

and because species are dynamic entities (both conceptually and genetically). However, there are             

a series of actions that help to minimize mis-assignments at all levels. Firstly, increased              

parameterization and strengthened curation of reference databases is of paramount importance for            

all identification software. Secondly, the construction of a mock community that corresponds to             

the diversity of the system under study has an important impact on parameter choice and overall                

taxonomic assignment accuracy. Thirdly, QIIME, BLAST or LCA methods, in conjunction with            

aforementioned parameter tuning, currently seem the best approaches for generating accurate           

taxonomic assignments.  
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FIGURE CAPTIONS  
 
Figure 1. Annual citation rates over the last five years for 33 taxonomic assignment methods.               
Each method is assigned to one of four major categories - SC: Sequence composition, SS:               
Sequence Similarity, PH: Phylogenetic, PR: Probabilistic. Citation counts derive from a Google            
Scholar for the term “taxonomic assignment”, filtered by year. 
 
Figure 2. Overview of methodological approaches. Sequence similarity (SS) methods use local            
alignments to search for similarity between each query and the reference sequences. Sequence             
composition (SC) methods are trained by computing a k-mer frequency profile for each reference              
sequence, and then matching each query to this profile. Phylogenetic (PH) methods use global              
alignments including (or placing) the query in a phylogenetic tree. Probabilistic (PR) methods use              
a distance metric and then perform a hierarchical multinomial regression to estimate the certainty              
in the classification of each query at each taxonomic rank. 
 
Figure 3. Matthews correlation coefficient (MCC) for each mock community for all assignment             
methods. Taxonomic assignment was examined at three levels: A) Family, B) Genus, and C)              
Species. FSIS: Fish single individual per species; ISIS: Insect single individual per species; MIS:              
Zooplankton multiple individuals per species; PSS: Zooplankton population of single species;           
SIS: Zooplankton single individual per species. 
 
Figure 4. Distribution of R2 per method and mock community. Each R2 value is the fit between                 
the predicted accuracy based on a multiple regression (accuracy as dependent variable and all the               
parameters as independent variables) and the actual accuracy obtained. A) F1-score; B) Mathews             
correlation coefficient (MCC). 
 
Figure 5. Overall performance of the programs evaluated for all mock communities. A) Time of               
execution in log(seconds); B) Memory used in log(Mb); C) CPU usage in log (percentage CPU               
usage per core). The y-axis is log transformed to aid visualization. FSIS: Fish single individual               
per species; ISIS: Insect single individual per species; MIS: Zooplankton multiple individuals per             
species; PSS: Zooplankton population of single species; SIS: Zooplankton single individual per            
species.  
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FIGURES 
Figure 1. Annual citation rates over the last five years for 33 taxonomic assignment methods. Each method is                  
assigned to one of four major categories - SC: Sequence composition, SS: Sequence Similarity, PH: Phylogenetic,                
PR: Probabilistic. Citation counts derive from a Google Scholar for the term “taxonomic assignment”, filtered by                
year. 
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Figure 2. Overview of methodological approaches. Sequence similarity (SS) methods use local alignments to search               
for similarity between each query and the reference sequences. Sequence composition (SC) methods are trained by                
computing a k-mer frequency profile for each reference sequence, and then matching each query to this profile.                 
Phylogenetic (PH) methods use global alignments including (or placing) the query in a phylogenetic tree.               
Probabilistic (PR) methods use a distance metric and then perform a hierarchical multinomial regression to estimate                
the certainty in the classification of each query at each taxonomic rank. 
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Figure 3. Matthews correlation coefficient (MCC) for each mock community for all assignment methods.              
Taxonomic assignment was examined at three levels: A) Family, B) Genus, and C) Species. FSIS: Fish single                 
individual per species; ISIS: Insect single individual per species; MIS: Zooplankton multiple individuals per species;               
PSS: Zooplankton population of single species; SIS: Zooplankton single individual per species. 
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Figure 4. Distribution of R2 per method and mock community. Each R2 value is the fit between the predicted                   
accuracy based on a multiple regression (accuracy as dependent variable and all the parameters as independent                
variables) and the actual accuracy obtained. A) F1-score; B) Mathews correlation coefficient (MCC). FSIS: Fish               
single individual per species; ISIS: Insect single individual per species; MIS: Zooplankton multiple individuals per               
species; PSS: Zooplankton population of single species; SIS: Zooplankton single individual per species. FSIS: Fish               
single individual per species; ISIS: Insect single individual per species; MIS: Zooplankton multiple individuals per               
species; PSS: Zooplankton population of single species; SIS: Zooplankton single individual per species. 
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Figure 5. Overall performance of the programs evaluated for all mock communities. A) Time of execution in                 
log(seconds); B) Memory used in log(Mb); C) CPU usage in log (percentage CPU usage per core). The y-axis is log                    
transformed to aid visualization. FSIS: Fish single individual per species; ISIS: Insect single individual per species;                
MIS: Zooplankton multiple individuals per species; PSS: Zooplankton population of single species; SIS:             
Zooplankton single individual per species. 
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TABLES  
Table 1. Strengths and weaknesses of the main methods for taxonomic assignment. Reliability             
refers to how often expected results are recovered; Availability depicts the ease of obtaining and               
installing the program (including current support); Scalability is the capacity to upsize the test;              
Understandability is the ease of comprehension of the algorithm by non-technical users; Ease of              
use refers to how easy is to install and run the program. 

 

Sequence 
Similarity (SS) 

Sequence 
Composition 

(SC) 

Phylogenetic 
(Ph) 

Probabilistic 
(Pr) 

Reliability High/Low* High/Low* High*** High 
Availability High Medium Medium Low 
Scalability Medium High/Low** Very low High 
Understandability High Low High Low 
Ease of use High/Medium Medium Medium/Low Low 
* High if exact match or conspecific in database, medium to low if not 
** If already trained it is extremely fast, but training can require high computational power 
*** If enough signal in the sequence (See Janssen et al. 2018)  
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Table 2. Parameter space for the optimization of the programs used. 
 

Program Parameter Space 

Blast (Top hit) 

e-value {1E-50, 1E-25, 1E-15, 1E-7, 1E-4, 1E-2} 

Percent identity {70, 75, 80, 85, 90, 95, 100} 

Max target sequences {1, 25, 50, 75, 100, 500} 

BASTA (LCA) 

e-value {1E-50, 1E-25, 1E-15, 1E-7, 1E-4, 1E-2} 

Percent identity {70, 75, 80, 85, 90, 95, 100} 

Minimum number of hits {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

Maximum number of hits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

Percentage of hits to use {60, 70, 80, 90, 99} 

Kraken2 Confidence threshold 
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
1.0} 

QIIME Confidence threshold {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 

IDTAXA 

Confidence threshold {0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 

Bootstraps {50, 100, 200, 400} 

Minimum fraction of bootstraps {0.9, 0.92, 0.94, 0.96, 0.98, 1.0} 

HMMUFOTU 

Seed {1, 25, 50, 75, 100} 

Max observed distance {0, 0.1, 1, 10, 'inf'} 

Max placement error {1, 10, 20, 30, 40} 

Branch length estimating method {'unweighted', 'weighted'} 

Method for calculating prior probability of a 
placement {'uniform', 'height'} 

PROTAX Confidence threshold {0.1, 0.05, 0.01, 0.001} 
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