

15:30 - 16:15 – Sean Prosser New Developments for Natural History Collection Barcoding

DNA Barcoding Natural History Collections

Recap

Barcoding Museum Specimens

Age	Target Amplicons	Final Sequence Length	Method	No. Reactions (PCR/SEQ)
Fresh – 15 yrs	658 bp	658 bp	Sanger	1/1
15 - 60 yrs	307 bp, 407 bp	658 bp	Sanger	2/4
60-240+ yrs	15 amplicons ranging from 119 - 366 bp	658 bp	Sanger or NGS	2/1

New Developments

Primers

PCR Protocols

MID-Tagging

NGS Data Assembly and Analysis

NGS Platforms

Primers

Barcoding Museum Specimens

Primers

Barcoding Museum Specimens

Single Multiplex

• Preferential amplification/sequencing of overlap regions

Dual Multiplex

• Amplify several different DNA fragments simultaneously

Dual Multiplex

• Amplify several different DNA fragments simultaneously

Dual Multiplex

• Amplification bias

Two-Round PCR

• 2 PCR to help reduce amplification bias \rightarrow insufficient

PCR 1

Multiplex + Nested PCR

Multiplex + Nested PCR

• Redundancy to increase chances of recovery

658 bp Barcode												
F1			R1									
F1					R2							
		50				1						
		F2			R2							
		F2					R3					
				F3			R3					
										_		
				F3					R4	J		
						F4			R4]		
						4					DE	
						F4					R5	
								F5			R5	
								F5				R6
										F6		R6

Multiplex + Nested PCR

Tail PCR1 Primers

Reads Assembled into a Full-Length Barcode

Multiplex IDentifier tags

- Unique sequence fragment added before the primers for each sample
 - Fragment not usually found in nature

MID-Tagging

• Can add unique tag for each well (samples)

MID-Tagging

Duel MID-Tagging

- Unique tag for rows and one for columns
 - Cost effective
 - Scalable
 - Must be able to read both MID tags!

Reverse MID 1-8

1 Align to reference

Problems with Reference-Based Assembly

Dalopius tristis (Coleoptera)

Identification	Percent Divergent	Notes	Recoverd bp
Dalopius tristis	0.6%	Same species	658
Dalopius asellus	3.8%	Same genus	658
Dalopius marginatus	6.2%	Same genus	658
Dalopius vagus	7%	Same genus	654
Dalopius naomii	7%	Same genus	657
Dalopius asellus	7%	Same genus	658
Dalopius pallidus	8%	Same genus	658
Agriotes avulsus	14%	Same family	561
Agriotes sordidus	14%	Same family	432
Agriotes obscurus	15%	Same family	527
Agriotes proximus	15%	Same family	523
Agriotes lineatus	15%	Same family	427
Agriotes acutus	15%	Same family	615
Agriotes brevis	15%	Same family	501
Agriotes tardus	15%	Same family	392
Agriotes limosus	16%	Same family	395
Agriotes ustulatus	16%	Same family	589
Agriotes quebecensis	16%	Same family	396
Agriotes pilosellus	16%	Same family	534
Agriotes stabilis	16%	Same family	484
Agriotes pubescens	16%	Same family	604
Agriotes acuminatus	17%	Same family	395
Agriotes mancus	17%	Same family	489
Agriotes apicalis	17%	Same family	513
Agriotes insanus	17%	Same family	435
Agriotes gallicus	17%	Same family	210
Agriotes sputator	17%	Same family	492
Agriotes pallidulus	18%	Same family	465
Agriotes fucosus	19%	Same family	508
Agriotes collaris	19%	Same family	438
Podeonius acuticornis	19.8%	Same family	370
Agriotes oblongicollis	20%	Same family	395

Identification	Percent Divergent	Notes	Recoverd bp
Drosophila melanogaster	20.1%	Fly	459
Gryllus campestris	20.3%	Dragonfly	330
Danaus plexippus	23.4%	Monarch butterfly	150
Mulsanteus arizonensis	24.2%	Same family	87
Tettigonia viridissima	25.7%	Cricket	149
Acanthosoma haemorrhoidale	27.6%	Shield bug	106
Xyleborinus saxeseni	28.2%	Same order	98
Homarus americanus	29.1%	Lobster	119
Rana sylvatica	38.3%	Frog	0
Apis mellifera	38.7%	Honey bee	0
Opistophthalmus macer	39.6%	Scorpion	0
Castor canadensis	39.8%	Beaver	0
Oncorhynchus mykiss	40.1%	Rainbow trout	0
Larus delawarensis	40.1%	Sea gull	0
Cyanea capillata	43.7%	Lion's mane jellyfish	0
Thamnophis sirtalis	46.3%	Garter snake	0

Problems with de novo Assembly

• If a fragment is not recovered \rightarrow Obtained 2 short seq

Primer Guided de novo Assembly

 Looking for the bp location where the primer starts to assemble the different fragments together

Primer Guided de novo Assembly

- Assign reads to samples
- 2 Assign reads to a fragment based on primers
- 3 Insert N's in front of reads to force into alignment
- 4 Take majority consensus of entire assemblage

- Primers are often not visible in reads produced by second generation platforms:
 - Unidirectional sequencing
 - Sequencing errors
 - Quality trimming

Single Molecule Real Time Sequencing

 Addition of SMRT bell adapters at each end of the DNA fragment to turn it into a circular form

SMRT Sequencing

• Multiple passes of DNA polymerase

SMRT Sequencing

 Results in several short DNA fragments of low quality for the same section

SMRT Sequencing

- After removing all the SMR bell adapters:
 - Create a consensus to obtain the final DNA sequence of high quality

Advantages of SMRT Sequencing

- High quality, full-length reads
 - More confidence in low coverage areas
 - Reference free "de novo" assembly
 - Can use MID-Tags at each end of amplicon
 - Increase throughput at almost no cost (asymmetrical tagging)
 - Can de-multiplex using either end of read (symmetrical tagging)

Ion Torrent with reference sequence

PacBio without reference sequence

Disadvantages of SMRT Sequencing

- Lower throughput
 - Effects of amplification bias will be more pronounced

Ion Torrent PGM - 5M reads

PacBio Sequel - 250K reads

Disadvantages of SMRT Sequencing

- Need to invent custom "de novo" assembly software
- De novo assembly is not smart
 - No alignments
 - Will create chimeric sequences if input data is not clean

Sanger-based sequencing

Taxon	Sanger recovery (%)	NGS-based recovery (%)
Moths (old)	7	87
Beetles (old)	13	67
Spiders (ethanol)	7	95
Spiders (formalin)	0	86
Reptiles & amphibians (formalin)	1	22
Mammals (formalin)	0	24

Summary

- Full-length barcodes can be recovered from musuem specimens even when Sanger fails
- Advantages:
 - DNA damage due to age and/or preservation method can be circumvented with this method
 - Currently works across major insect and arachnid orders
 - Primer can be customized for any taxa
 - Mammals, fish, birds
 - Marine inverterates
 - Data analysis can be highly automated

Disadvantages

- Risk of chimeric sequences sequences need to be validated
- Throughput is mediocre currently 95 samples per sequencing reaction but expected to increase with improved sequencing efficiency

Resources

MOLECULAR ECOLOGY RESOURCES

Molecular Ecology Resources (2016) 16, 487-497

doi: 10.1111/1755-0998.12474

DNA barcodes from century-old type specimens using next-generation sequencing

SEAN W. J. PROSSER,* JEREMY R. DEWAARD,* SCOTT E. MILLER† and PAUL D. N. HEBERT* *Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada, †National Museum of Natural History, Smithsonian Institution, Washington, DC, USA

Sean Prosser - sprosser@uoguelph.ca