

15:30-16:15-Sean Prosser

New Developments for Natural History Collection
Barcoding Genomics DNA Barcoding Natural History Collections

Recap

Barcoding Museum Specimens

Age	Target Amplicons	Final Sequence Length	Method	No. Reactions (PCR/SEQ)
Fresh - $\mathbf{1 5}$ yrs	658 bp	658 bp	Sanger	$1 / 1$
$\mathbf{1 5 - 6 0}$ yrs	$307 \mathrm{bp}, 407 \mathrm{bp}$	658 bp	Sanger	$2 / 4$
$\mathbf{6 0 - 2 4 0 +}$ yrs	15 amplicons ranging from $119-366 \mathrm{bp}$	658 bp	Sanger or NGS	$2 / 1$

New Developments

Primers

PCR Protocols

MJID-Tegging

NGS Data Assembly and Analysis

NGS Platforms

Primers

Barcoding Museum Specimens

Primers

Barcoding Museum Specimens

- Older specimens \rightarrow degraded DNA

PCR Protocols

- Single multiplex

PCR Protocols

Single Multiplex

- Preferential amplification/sequencing of overlap regions

PCR Protocols

PCR Protocols

PCR Protocols

- Siñ́a multipléa

Overlap Amplification

- Dual multiplex

PCR Protocols

Dual Multiplex

- Amplify several different DNA fragments simultaneously

PCR Protocols

Dual Multiplex

- Amplify several different DNA fragments simultaneously

PCR Protocols

Dual Multiplex

- Amplification bias

PCR Protocols

- Siñ́a multipléa

Overlap Amplification

- Dual multiplex

PCR Protocols

PCR Protocols

Overlap Amplification

- Dual multiplex - Amplification Bias
- Adjust primer conc.

PCR Protocols

- Dual multiplex
- Adjuist primer conc. No Effect

PCR Protocols

- Siñ́g multipléa
- Dual multiplex
- Adjuist primer conc. No Effect
- Re-Design Primers

PCR Protocols

- Siñ́g multipléa
- Dual multiplex
- Adjüst primer conc. No Effect
- Re-Desigizin Pímets No Effect

PCR Protocols

> - Siñ́le multipléa
> Overlap Amplification
> - Dual multiplex
> Amplification Bias
> - Adjüst primer conc. No Effect
> - Re-Desigin Püimetis No Effect
> - Two-Round PCR

PCR Protocols

Two-Round PCR

- 2 PCR to help reduce amplification bias \rightarrow insufficient

PCR 1
PCR 2

PCR Protocols

> - Siñ́le multipléa
> Overlap Amplification
> - Dual multiplex
> Amplification Bias
> - Adjüst primer conc. No Effect
> - Re-Desigin Püimetis No Effect
> - Two-Round PCR

PCR Protocols

- Siñ́le multipléa
- Dual multiplex
- Adjüst primer conc. No Effect
- Re-Desigiz Pínimets
- Two-noundu PCn - Insufficient

Overlap Amplification Amplification Bias

PCR Protocols

- Siñ́le multiplex
- Dual multiplex
- Adjuist primer conc. No Effect
- Re-Desigizin Pímetis No Effect
- Tivo-noünd PCR Insufficient
- Multiplex + Nested PCR

PCR Protocols

Multiplex + Nested PCR

PCR Protocols

Multiplex + Nested PCR

- Redundancy to increase chances of recovery

658 bp Barcode

PCR Protocols

- Siñ́le multipléa
- Dual multiplex
- Adjüst primer conc. No Effect
- Re-Desigizin Pímetis No Effect
- Tivo-noundu PCR Insufficient
- Multiplex + Nested PCR

PCR Protocols

- Dual multiplex
- Adjuist primer conc. No Effect
- Re-Designin Püimetis No Effect
- Two-noünu pCn Insufficient
- iviuitipiex + ivesied PCR̂ - Primer Incorporation

PCR Protocols

Multiplex + Nested PCR

PCR Protocols

- Dual multiplex
- Adjuist primer conc. No Effect
- Re-Designin Püimetis No Effect
- Tivo-nound PCR Insufficient
- iviuitipiex + ivesied PCR̂ - Primer Incorporation

PCR Protocols

- Dualmultiplex
- Adjüst primer conc. No Effect
- Re-Desigizin Pímetis No Effect
- Two-noünu pCn Insufficient
- iviulitipiex + ivesié PĈ́n Primer Incorporation
- Tail PCR1 primers

PCR Protocols
Tail PCR1 Primers

PCR Protocols

- Dualmultiplex
- Andjust primeri conc.- No Effect
- Re-Desigit Pímitis
- Two-noünu PCn Insufficient
- Multiplẽ天 i ivesteú PCn
- Tail PCR1 primers

Overlap Amplification Amplification Bias
$+$

PCR Protocols

Reads Assembled into a Full-Length Barcode

MID-Tagging

Multiplex IDentifier tags

MID-Tagging

Unique sequence fragment added before the primers for each sample

Fragment not usually found in nature

MID-Tagging

- Can add unique tag for each well (samples)

MID-Tagging

Duel MID-Tagging

Unique tag for rows and one for columns
Cost effective
Scalable

- Must be able to read both MID tags!

MID	F1		R1	MID

Forward MID 1-12

NGS Datia Assembly and Analysis

1) Align to reference

NGS Data Assembly and Analysis

Problems with Reference-Based Assembly

Dalopius tristis (Coleoptera)

Identification	Percent Divergent	Notes	Recoverd bp
Dalopius tristis	0.6\%	Same species	658
Dalopius asellus	3.8\%	Same genus	658
Dalopius marginatus	6.2\%	Same genus	658
Dalopius vagus	7\%	Same genus	654
Dalopius naomii	7\%	Same genus	657
Dalopius asellus	7\%	Same genus	658
Dalopius pallidus	8\%	Same genus	658
Agriotes avulsus	14\%	Same family	561
Agriotes sordidus	14\%	Same family	432
Agriotes obscurus	15\%	Same family	527
Agriotes proximus	15\%	Same family	523
Agriotes lineatus	15\%	Same family	427
Agriotes acutus	15\%	Same family	615
Agriotes brevis	15\%	Same family	501
Agriotes tardus	15\%	Same family	392
Agriotes limosus	16\%	Same family	395
Agriotes ustulatus	16\%	Same family	589
Agriotes quebecensis	16\%	Same family	396
Agriotes pilosellus	16\%	Same family	534
Agriotes stabilis	16\%	Same family	484
Agriotes pubescens	16\%	Same family	604
Agriotes acuminatus	17\%	Same family	395
Agriotes mancus	17\%	Same family	489
Agriotes apicalis	17\%	Same family	513
Agriotes insanus	17\%	Same family	435
Agriotes gallicus	17\%	Same family	210
Agriotes sputator	17\%	Same family	492
Agriotes pallidulus	18\%	Same family	465
Agriotes fucosus	19\%	Same family	508
Agriotes collaris	19\%	Same family	438
Podeonius acuticornis	19.8\%	Same family	370
Agriotes oblongicollis	20\%	Same family	395

Identification	Percent Divergent		Notes
Recoverd bp			
	20.1%	Fly	459
Gryllus campestris	20.3%	Dragonfly	330
Danaus plexippus	23.4%	Monarch butterfly	150
Mulsanteus arizonensis	24.2%	Same family	87
Tettigonia viridissima	25.7%	Cricket	149
Acanthosoma haemorrhoidale	27.6%	Shield bug	106
Xyleborinus saxeseni	28.2%	Same order	98
Homarus americanus	29.1%	Lobster	119
Rana sylvatica	38.3%	Frog	0
Apis mellifera	38.7%	Honey bee	0
Opistophthalmus macer	39.6%	Scorpion	0
Castor canadensis	39.8%	Beaver	0
Oncorhynchus mykiss	40.1%	Rainbow trout	0
Larus delawarensis	40.1%	Sea gull	0
Cyanea capillata	43.7%	Lion's mane jellyfish	0
Thamnophis sirtalis	46.3%	Garter snake	0

NGS Data Assembly and Analysis

Problems with de novo Assembly

- If a fragment is not recovered \rightarrow Obtained 2 short seq

NGS Data Assembly and Analysis

Primer Guided de novo Assembly

- Looking for the bp location where the primer starts to assemble the different fragments together

NGS Data Assembly and Analysis

Primer Guided de novo Assembly

(1) Assign reads to samples
2) Assign reads to a fragment based on primers
(3) Insert N's in front of reads to force into alignment
4. Take majority consensus of entire assemblage

NGS Data Assembly and Analysis

Primers are often not visible in reads produced by second generation platforms:

- Unidirectional sequencing
- Sequencing errors
- Quality trimming

NGS Platforms

Single Molecule Real Time Sequencing

- Addition of SMRT bell adapters at each end of the DNA fragment to turn it into a circular form

NGS Platforms

SMRT Sequencing

- Multiple passes of DNA polymerase

NGS Platforms

SMRT Sequencing

- Results in several short DNA fragments of low quality for the same section

NGS Platforms

SMRT Sequencing

- After removing all the SMR bell adapters:
- Create a consensus to obtain the final DNA sequence of high

NGS Platforms

Advantages of SMRT Sequencing

- High quality, full-length reads
- More confidence in low coverage areas
- Reference free "de novo" assembly
- Can use MID-Tags at each end of amplicon
- Increase throughput at almost no cost (asymmetrical tagging)
- Can de-multiplex using either end of read (symmetrical tagging)

ION TORRENT

SMRT

NGS Platforms

Ion Torrent with reference sequence

NGS Platforms

Disadvantages of SMRT Sequencing

- Lower throughput
- Effects of amplification bias will be more pronounced

NGS Platforms

Disadvantages of SMRT Sequencing

- Need to invent custom "de novo" assembly software
- De novo assembly is not smart
- No alignments
- Will create chimeric sequences if input data is not clean

NGS Platforms

NGS Platforms

Sanger-based sequencing

NGS-based method

NGS Platforms

Taxon	Sanger recovery $(\%)$	NGS-based recovery $(\%)$
Moths (old)	7	87
Beetles (old)	13	67
Spiders (ethanol)	7	95
Spiders (formalin)	0	86
Reptiles \& amphibians (formalin)	1	22
Mammals (formalin)	0	24

Summary

- Full-length barcodes can be recovered from musuem specimens even when Sanger fails
- Advantages:
- DNA damage due to age and/or preservation method can be circumvented with this method
- Currently works across major insect and arachnid orders
- Primer can be customized for any taxa
- Mammals, fish, birds
- Marine inverterates
- Data analysis can be highly automated
- Disadvantages
- Risk of chimeric sequences - sequences need to be validated
- Throughput is mediocre - currently 95 samples per sequencing reaction but expected to increase with improved sequencing efficiency

Resources

MOLECULAR ECOLOGY

RESOURCES

DNA barcodes from century-old type specimens using next-generation sequencing

SEAN W. J. PROSSER,* JEREMY R. DEWAARD,* SCOTT E. MILLER \dagger and PAUL D. N. HEBERT*
*Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada, \dagger National Museum of Natural History, Smithsonian Institution, Washington, DC, USA

Sean Prosser - sprosser@uoguelph.ca

